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A B S T R A C T

Extreme flood disasters are intensified by climate change, exposing an increasing share of the global population 
to flood hazards. Accurate monitoring of inundation extents during floods is crucial for disaster management and 
impact assessment. While remote sensing can provide strong support for flood monitoring, optical satellite im
ages often face significant challenges due to weather conditions and infrequent revisits, particularly in cloudy 
and rainy regions. To address this limitation and achieve seamless flood mapping with cloudy satellite images, 
this paper proposes TerrainFloodSense, a novel method that fuses water occurrence with terrain data to enhance 
the reconstruction of cloud-covered flooding areas, especially under extreme and unprecedented flood scenarios. 
Specifically, TerrainFloodSense first generates enhanced water occurrence data by Bayesian fusion of terrain 
indices, including Digital Surface Model (DSM) along with Height Above the Nearest Drainage (HAND), and 
historical water occurrence data. Then, enhanced water occurrence data are used to fill gaps caused by clouds in 
water maps derived from optical satellite images, guided by the submaximal stability assumption. The basic idea 
is that prior terrain information can be incorporated into the initial water occurrence data to enhance the ability 
to predict the inundation probabilities for both regular pre-flood water and extreme floodwater and to help 
reconstruction of cloud-covered flooding areas even under extreme flooding scenarios. Simulated experiments 
and applications in large-area flood mapping cases confirmed that TerrainFloodSense significantly outperformed 
existing methods, achieving absolute accuracy improvements of 2.95%–8.86% in overall accuracy and 
0.038–0.087 increases in F1-Score under extreme flooding scenarios. This study demonstrated that the fusion of 
water occurrence and terrain data can effectively improve seamless flood mapping by using optical satellite 
images, supporting disaster monitoring and impact assessment in cloudy and rainy environments. The code 
associated with this study has been made publicly accessible via https://github.com/RCAIG/TerrainFloodSense.

1. Introduction

As one of the most common and severe natural disasters, floods have 
been intensified due to climate change, putting a larger proportion of the 
population at risk than ever (IPCC, 2023; Rentschler et al., 2022; Tell
man et al., 2021). Obtaining timely flood information, such as extent 
and duration, is crucial for flood disaster emergency response and 
impact assessment, given the increasing flood risks (Li et al., 2024a,b,c). 
As two typical and low-cost ways for flood monitoring, satellite remote 
sensing and ground simulation and modeling have been widely used in 

different scenarios because of their respective strengths and limitations.
Satellite remote sensing can provide wide-range and direct obser

vations of floods. Time series imagery from multiple satellites can be 
used to detect extents of surface water bodies and track their dynamic 
changes over time (Li et al., 2021b; Li et al., 2022; Yue et al., 2023). 
Flood inundated areas can then be highlighted and separated from 
regular inundated areas by excluding pre-flood water areas (Hashemi- 
Beni and Gebrehiwot, 2021; Chen et al., 2024). However, limitations in 
satellite-based flood monitoring primarily arise from two commonly 
used image sources, i.e., optical satellites and synthetic aperture radar 
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(SAR) imagery (Konapala et al., 2021; Martinis et al., 2022). On the one 
hand, while there are relatively abundant data sources for optical sat
ellite images, such as MODIS, Landsat and Sentinel-2, they are inevitably 
affected by cloud cover, which reduces their availability and valid 
observation frequency (Goffi et al., 2020; Li et al., 2021a; Li et al., 
2022b; Shastry et al., 2023). On the other hand, SAR imaging is weather- 
and time-independent, making it an ideal data source for flood moni
toring during adverse weather, such as cloud cover or rainfall. However, 
the limited open-access data sources for SAR images prevent their wider 
applications compared to optical satellite data. Additionally, the long 
revisits (e.g., 6–12 days for Sentinel-1) of SAR satellites make capturing 
short-duration flood events challenging (Helleis et al., 2022; Fichtner 
et al., 2023). Moreover, the heavy speckle noises in SAR images limit its 
effectiveness in complex urban areas (Notti et al., 2018; McCormack 
et al., 2022; Tupas et al., 2023), whereas optical satellite images can 
provide high-resolution surface details. Given the above facts, it is clear 
that the potential of satellite remote sensing for flood monitoring is 
significantly limited by cloud cover; thus, achieving seamless flood 
monitoring beyond clouds is crucial for leveraging optical satellite im
ages to identify inundated areas. While our recent study (Li et al., 2024a) 
provided an initial solution to deal with this issue, the limitation under 
extreme flooding scenarios, such as one-in-hundred-year floods, neces
sitates further improvements.

Ground simulation and modeling methods focus on simulating 
inundation situations by modeling rainfall, runoff, and other hydrolog
ical processes across landscapes (Fraehr et al., 2023; Giustarini et al., 
2016; Zingaro et al., 2024). The advantages of these methods lie in their 
ability to provide time-intensive simulated flood inundation informa
tion, even for areas with sparse observation data (Peramuna et al., 
2025). Additionally, they can be used to simulate complex scenarios and 
predict flood inundation and risks under varied conditions, such as 
future climate scenarios (Fraehr et al., 2023; Tupas et al., 2023). How
ever, limitations of these methods arise from their high dependence on 
data quality, such as terrain data, precipitation, and land cover 
(Schumann et al., 2022; Zingaro et al., 2024). Furthermore, they may 
require significant computational resources for high-resolution flood 
modeling, which reduces their efficiency in large-area flood inundation 
simulation (Wang et al., 2024b). While recent efforts have been made to 
boost flood simulation efficiency by using machine learning techniques 
(Yokoya et al., 2022; Fraehr et al., 2023; Xu et al., 2024), uncertainties 
in simulated inundation maps remain. These unavoidable uncertainties 
necessitate the combination of ground simulation and modeling with 
real observations, such as those obtained from satellites.

Considering the challenges in seamless flood mapping under clouds 
and the necessity of integrating ground simulation and satellite obser
vations for enhanced flood mapping, we propose an effective method 
that fuses satellite and terrain data for enhanced seamless flood map
ping. The development of the method is motivated by the limitations of 
previous studies in seamless flood mapping under extreme flooding 
scenarios (Tulbure et al., 2022; Li et al., 2024a). The effective recon
struction of cloud-covered flooding areas is subject to the availability of 
spatiotemporally neighboring satellite observations and the prior inun
dation probabilities based on auxiliary water occurrence data derived 
from historical satellite observations (Mullen et al., 2021; Martinis et al., 
2022; Feng et al., 2023; Fichtner et al., 2023; Huang et al., 2023). Under 
extreme flooding scenarios, such as one-in-hundred-year floods, it re
mains particularly challenging to retrieve flood extent in areas obscured 
by cloud cover, especially those that have rarely or never been inun
dated in history and observed by satellites.

The basic idea of the proposed method lies in the fusion of water 
occurrence and terrain data, which can enhance the recovery of extreme 
flooding areas obscured by cloud cover. By directly fusing water 
occurrence and terrain data, rather than relying solely on computa
tionally intensive terrain-based inundation simulation and modeling, 
the proposed method achieves spatially seamless flood mapping with 
significantly reduced computational costs. This innovative solution 

makes seamless flood mapping with cloud-covered optical satellite im
ages effective even under extreme flooding scenarios.

While this study builds upon our previous work on seamless flood 
mapping using optical satellite image time series (Li et al., 2024a), it 
introduces substantial methodological advancements to address critical 
gaps in extreme flooding scenarios. The previous study primarily 
focused on leveraging spatiotemporal information from optical image 
series and ancillary water occurrence to reconstruct flood dynamics 
under general conditions. However, such an approach tends to be less 
effective in extreme flood events due to historical bias and uncertainty in 
the water occurrence data, particularly in regions with sparse or no prior 
inundation records. To overcome this limitation, this study introduces a 
terrain-informed Bayesian fusion framework that integrates terrain in
dicators, namely the Digital Surface Model (DSM) and Height Above 
Nearest Drainage (HAND), with historical water occurrence data, 
enabling more physically grounded flood susceptibility estimation. This 
allows for more robust reconstruction of flood extents in rarely inun
dated regions, where previous methods typically fail. Moreover, the 
proposed method is less dependent on spatiotemporal continuity of 
satellite observations, which is often disrupted during rapidly evolving 
or short-duration flood events. These improvements make the method 
developed in this study not merely an incremental extension, but a 
substantial advancement beyond our earlier work, particularly in terms 
of generalizability and applicability to extreme and unprecedented 
flooding conditions.

The key contributions of this study are outlined below: 

1) We propose TerrainFloodSense, a novel seamless flood mapping 
method that significantly improves the accuracy of cloud recon
struction in inundation areas by fusing water occurrence and terrain 
data. Extensive experiments show that our method achieves absolute 
improvements in overall accuracy of 2.95 %–8.86 % under extreme 
flooding scenarios compared to benchmarks.

2) A simple but efficient Bayesian fusion framework is introduced that 
integrates historical satellite-derived water occurrence data with 
terrain-derived indices, i.e., DSM and derived HAND. This frame
work is applied to generate enhanced water occurrence, improving 
cloud reconstruction performances thereby benefiting seamless flood 
mapping.

3) This study highlights unignorable uncertainties in flood mapping 
caused by cloud cover effects and confirms the benefits of cloud 
reconstruction. Moreover, this study underscores the potential of 
TerrainFloodSense for seamless flood mapping to support emergency 
flood response and precise impact assessments.

With the goal of enhancing the spatial continuity and observation 
frequency in flood mapping, this study developed a novel method that 
leverages cloudy optical satellite images to achieve seamless flood 
mapping, thereby effectively complementing flood monitoring using 
SAR images alone. Particularly, the performance of seamless mapping 
under extreme flooding scenarios was improved via the fusion of water 
occurrence and terrain data. The solution developed in this study will 
effectively support disaster monitoring and impact assessment.

2. Study area and data

2.1. Study area

In this study, three flood events caused by heavy rainfall were 
selected for experiments and validation purposes. These three flood 
events were also selected because the corresponding regions are known 
for frequent exposure to flooding and widespread impacts (Rentschler 
et al., 2022; Tulbure et al., 2022). The geographic locations of the three 
study areas are shown in Fig. 1, and the flood event in each study area is 
representative of different hydrological and cloud-cover conditions. The 
three selected events are described below to highlight their distinct 
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characteristics. 

1) Assam, India (May–August 2022): The first flood event occurred 
between May and August 2022 in Assam, India, a region situated 
along the Brahmaputra River and recognized as one of the most 
flood-prone areas globally due to monsoon-driven hydrology and 
low-lying terrain. This was a seasonal, monsoon-driven flood event, 
which is relatively regular given Assam’s frequent and extensive 
flooding history.

2) Sindh, Pakistan (August–September 2022): The second flood 
event took place in Sindh, Pakistan between August and September 
2022, where widespread inundation and prolonged flood duration 
severely impacted agriculture and infrastructure, making it a critical 
region for evaluating large-area flood mapping performance. This 
was an extreme flood event triggered by exceptionally heavy rainfall, 
resulting in record-breaking impacts.

3) Rio Grande do Sul, Brazil (September 2023): The third flood event 
occurred in Rio Grande do Sul, Brazil in September 2023, where 
intense rainfall led to river overflow. This was another extreme flood 
event caused by intense rainfall, exceeding historical flood levels in 
several areas that had rarely or never been previously inundated. 
Notably, this event was characterized by heavy cloud cover and 
infrequent satellite overpasses, making it an ideal case for evaluating 
cloud reconstruction and flood mapping methods.

2.2. Study data

The datasets used in this study cover all three study areas, and all 
have a 30-m resolution to ensure consistent data processing. The data
sets include: 

• Harmonized Landsat and Sentinel-2 (HLS): The HLS images (Claverie 
et al., 2018) were obtained from https://hls.gsfc.nasa.gov/. The HLS 
dataset combines observations from Landsat-8/9 and Sentinel-2 
satellites, offering image acquisitions at intervals of 2–3 days. The 
HLS images obtained were used to derive initial water maps in this 
study, providing a reliable baseline for high-frequency flood 
monitoring.

• GSW Water Occurrence: Water occurrence data were collected from 
the Global Surface Water (GSW) dataset (Pekel et al., 2016), avail
able at https://global-surface-water.appspot.com/download. The 
GSW dataset is generated based on 37-year Landsat observations 
from 1984 to 2021. In this study, the GSW water occurrence data will 
be used as ancillary input for seamless flood mapping.

• ALOS Digital Surface Model (DSM): The DSM data were sourced from 
the ALOS World 3D - 30 m (AW3D30) dataset (Tadono et al., 2014; 

Takaku et al., 2014), available at https://developers.google.com/ea 
rth-engine/datasets/catalog/JAXA_ALOS_AW3D30_V3_2. This DSM 
data is essential for identifying topographic depressions and low- 
lying flood-prone areas, which are critical for estimating potential 
inundation zones.

• Height Above Nearest Drainage (HAND): The HAND data were ob
tained from the Global 30 m Height Above the Nearest Drainage 
dataset (Donchyts et al., 2016), accessible via https://gee-communi 
ty-catalog.org/projects/hand/. HAND represents the vertical dis
tance from each pixel to the nearest drainage channel, and serves as a 
hydrological indicator of potential flood susceptibility, especially in 
areas lacking direct flood observations.

3. Methodology

To obtain seamless flood maps using optical satellite imagery, which 
are often affected by cloud cover, we proposed TerrainFloodSense, an 
improved method that reconstructs cloud-covered flooding areas by 
fusing terrain data with water occurrence derived from decades of sat
ellite observations. As shown in Fig. 2, which takes the study area in Rio 
Grande do Sul, Brazil, as an example, TerrainFloodSense involves three 
key steps: data pre-processing, multi-source data fusion, and cloud 
reconstruction. The input data consists of HLS images, DSM data and 
derived HAND index, and GSW water occurrences, all with a 30-m 
resolution. The output is seamless flood maps in which regions 
masked by cloud cover in initial water maps are effectively 
reconstructed.

Specifically, the terrain data, i.e., DSM data and derived HAND data, 
were first normalized and combined to generate the terrain-derived 
inundation index; Then, the inundation index was fused with GSW 
water occurrence using the proposed Bayesian fusion framework to 
obtain enhanced water occurrence data. Finally, cloud reconstruction is 
applied to the initial water maps derived from HLS image series, using 
the enhanced water occurrence as ancillary data to fill the cloud- 
contaminated areas, in accordance with the submaximal stability 
assumption. The final seamless flood maps are produced by excluding 
pre-flood water areas from the reconstructed water maps. The details of 
the methodology are introduced in the following subsections.

3.1. Data preprocessing

The GSW water occurrence dataset indicates the frequency of water 
occurrence in a region based on decades of historical Landsat satellite 
observations, with occurrence percentages varying between 0 and 100. 
This dataset contains prior information on water dynamics and thus has 
been used as ancillary data to fill gaps caused by clouds in water maps 

Fig. 1. Geographic locations of the three selected study areas for flood mapping (base map credit: NASA Visible Earth).
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derived from cloudy Landsat images to obtain seamless water maps. 
However, limitations exist with the application of this dataset for 
seamless flood mapping, primarily in the following two aspects: (1) 
Non-negligible uncertainties exist in low-occurrence water areas, 
where short-term water dynamics, such as occasional floods, increase 
statistical biases due to limited observations. This problem is exacer
bated under cloudy and rainy weather conditions when optical satellites 
fail to provide valid observations; (2) Insufficient historical obser
vations of extreme flood events reduce the reliability of prior infor
mation contained in the water occurrence dataset for reconstructing the 
cloud-covered inundation areas. This issue becomes increasingly severe 
as climate change intensifies extreme flooding, causing areas rarely or 
never inundated in history to expand significantly.

To address these issues, this study integrates terrain data, i.e., DSM 
and HAND, to enhance the initial GSW water occurrence data and thus 
improve the cloud reconstruction for seamless flood mapping, especially 
under extreme flooding scenarios. Specifically, the DSM data were uti
lized to infer potential flood-prone areas. Given that susceptibility to 
floods is closely related to the proximity to drainage, the additional 
HAND index is employed to indicate the risk of specific areas being 
inundated. HAND represents the vertical distance between a given point 
and its nearest drainage location along the drainage network, and is 
computed as follows: 

HAND = Hpixel − Hdrainage (1) 

where Hpixel denotes the height of the target cell, and Hdrainage refers to 
the height of its nearest drainage location.

Generally, areas with lower elevation and closer proximity to 
drainage are more susceptible to flooding. The terrain-derived inunda
tion index is computed as a weighted combination of the min–max 

normalized DSM and HAND indices. 

Inundationindex = α • norm(DSM)+ (1 − α) • norm(HAND) (2) 

where α is a weighting coefficient that balances the contribution of the 
DSM and HAND indices to the inundation index; and norm refers to the 
min–max normalization operation.

In this study, α is empirically set to 0.3 based on sensitivity analysis, 
which enables a larger weight of 0.7 to be assigned to the HAND index as 
it provides more direct information on flood susceptibility. In the 
sensitivity analysis, we tested values of α ranging from 0 to 1 at 0.1 
intervals across all three study areas, and evaluated the reconstructed 
flood maps against validation labels used for quantitative assessment in 
Section 5.1. Sensitivity analysis results indicated that α = 0.3 achieved 
the best trade-off between precision and recall, with the highest overall 
accuracy. Thus, this value was adopted to balance the influence of DSM 
and HAND in identifying flood-prone areas. The obtained inundation 
index offers a more comprehensive representation of flood occurrence 
risk, especially for low-risk and potential future flooding regions. In 
addition, the two special cases where α = 0 and α = 1 can be regarded as 
ablation settings, where one terrain indicator (DSM or HAND, respec
tively) is excluded from the index. The results show that using either 
indicator alone yields suboptimal performance, confirming that both 
DSM and HAND contribute complementary information. Their fusion 
substantially improves the effectiveness of the terrain-derived inunda
tion index in supporting subsequent cloud reconstruction for seamless 
flood mapping.

3.2. Generation of enhanced water occurrence data via multi-source data 
fusion

The GSW water occurrence quantifies the historical frequency of 

Fig. 2. Overview of TerrainFloodSense for seamless flood mapping from cloud-covered optical satellite imagery. The process comprises three main steps: (1) Data 
pre-processing and generation of terrain-derived inundation index maps; (2) Generation of enhanced water occurrence data through the fusion of GSW water 
occurrence and terrain data; and (3) Cloud reconstruction applied to cloud-contaminated areas in the initial water maps.
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surface water presence based on decades of Landsat satellite observa
tions, capturing long-term water dynamics. Conversely, terrain-derived 
inundation index maps, calculated by combining DSM and the HAND 
index, encode prior knowledge of flood susceptibility based on terrain 
features. While these two datasets both describe inundation probability 
from different perspectives, they are fundamentally distinct. GSW water 
occurrence reflects the temporal frequency of surface water observed by 
Landsat satellites but lacks explicit terrain context, making it less sen
sitive to ephemeral inundation, such as short-term irrigation and floods. 
Conversely, the terrain-based inundation index encodes theoretically 
predicted flood inundation probability based on terrain features but 
without support from real observations.

Given the complementary nature of these two datasets, a Bayesian 
fusion framework is proposed to enhance GSW water occurrence data. 
Here, we define the fused water occurrence (FWO), denoted as Pfwo, as 
the posterior probability of water presence given the terrain-based 
inundation probability. Then Pfwo can be formulated as the equation 
below based on Bayes’ theorem: 

Pfwo = P(wo|terrain) =
P(terrain|wo) • Pwo

Pterrain
(3) 

where P(wo|terrain) is the posterior probability of water occurrence 
given terrain conditions, i.e., the fused water occurrence; P(terrain|wo) is 
the likelihood function, describing the probability of a certain terrain 
condition given a historical water occurrence; and Pwo and Pterrain 
represent the prior probability and marginal probability, respectively, 
indicated by the GSW water occurrence and terrain-derived inundation 
index.

In this study, in order to model Pfwo as the probability of water 
presence, and due to the limited availability of direct flood observations, 
we approximate P(terrain|wo) based on P(terrain|inundation), where 
inundation represents historical occurrences of water. Additionally, since 
Pwo falls within the normalized interval [0, 1] after normalization, the 
likelihood function P(terrain|inundation) can be estimated based on the 
distribution of historical water occurrence Pwo. To ensure consistency 
and computational efficiency, this study estimates P(terrain|inundation)
using the statistical frequency analysis over historical inundation re
gions as indicated by Pwo. Although Pwo is used to identify inundation- 
prone areas, we do not directly model P(terrain|wo). Instead, we use 
the regions indicated by water occurrence to sample terrain distribu
tions, thereby approximating the likelihood of terrain given inundation. 
This strategy provides a practical and data-driven estimation of flood- 
conditioned terrain features, especially in scenarios where direct flood 
observation is sparse or unavailable.

Specifically, for each unique terrain condition h in inundation index 
map, the probability that regions with Pterrain = h is associated with 
inundation is computed as: 

P(terrain = h|inundation) =
∑

Pwo(terrain = h)
∑

Pwo
(4) 

where Pwo(terrain = h) denotes the historical water occurrence of pixels 
where Pterrain = h. The denominator 

∑
Pwo normalizes the probability by 

summing water occurrences.
This approach ensures that the likelihood estimation reflects flood 

inundation susceptibility while simplifying computation and preserving 
spatial variability across different topographic conditions. Instead of 
constructing full probability distributions, the likelihood function is 
stored as a precomputed lookup table of terrain-conditioned inundation 
probabilities, making the Bayesian fusion efficient and scalable.

With the estimated likelihood function, the FWO at each unique 
terrain condition h can be computed as: 

Pfwo(inundation|terrain = h) =
P(terrain = h|inundation) • P(inundation)

P(terrain = h)
(5) 

where P(terrian = h|inundation) is derived from Eq. (4); P(inundation)
and P(terrain = h) denotes the general inundation probability and 
inundation probability under certain terrain condition h, respectively, 
which are defined as: 

P(inundation) =
∑

Pwo
∑

Pwo +
∑

(1 − Pwo)
(6) 

P(terrain = h) =
∑

Pwo(terrain = h) +
∑

(1 − Pwo(terrain = h))
∑

Pwo +
∑

(1 − Pwo)
(7) 

With Eqs. (4)–(7), the FWO under certain terrain conditions can be 
obtained with the simplified equation below: 

Pfwo(inundation|terrain = h)

=

∑
Pwo(terrain = h)

∑
Pwo(terrain = h) +

∑
(1 − Pwo(terrain = h))

(8) 

The simplified Eq. (8) indicates that the FWO under certain terrain 
conditions can be approximated by computing their average water oc
currences. Such an averaging water occurrence operation for each 
unique terrain conditions doesn’t require considering the absolute 
values of the inundation index Pterrain, instead, it consider only specific 
terrain conditions by dividing Pterrain into subregions with unique values. 
Additionally, the precomputed lookup table of terrain-conditioned 
inundation probabilities enables the effective fusion of the water 
occurrence data and terrain data. In summary, the Bayesian fusion 
framework, as represented by Eq. (3), and approximate estimation of 
FWO based on Eqs. (4)–(7), provide theoretical support for the simpli
fied but effective estimation of FWO under different terrain conditions 
according to Eq. (8).

To balance FWO with original GSW water occurrence, the generated 
FWO is mean–variance normalized to the [0,1] range, followed by a 
weighted combination with Pwo as follows: 

Pfinal
fwo = αPfwo +(1 − α)Pwo (9) 

where α is a weighting coefficient that controls the contribution of the 
FWO relative to the initial GSW water occurrence dataset. An empirical 
setting of 0.5 for α ensures a neutral balance between model-inferred 
and observation-based water occurrence components, reducing the 
risk of overfitting to either source, especially under varying regional 
hydrological contexts.

Note that the Bayesian fusion is restricted to areas exhibiting sig
nificant uncertainties in the GSW water occurrence dataset, empirically 
defined as regions with water occurrence values below 5. The threshold 
of 5 is chosen with reference to previous studies (Feng et al., 2023; Li 
et al., 2021a; Wang et al., 2024a) and serves as a conservative criterion 
to capture underdetected flood areas without overly disturbing stable 
water body representation. This strategy ensures corrections are made 
only where necessary while preserving reliable estimates in the GSW 
water occurrence data. With the aim of further refining the FWO and 
maintain statistical consistency, histogram matching is applied between 
the FWO and initial GSW water occurrence data. Since terrain data in
troduces finer variability, the fusion process may increase the number of 
unique values, potentially reducing stability in subsequent analyses. 
Histogram matching mitigates this issue by aligning the statistical dis
tribution of the FWO with the initial GSW water occurrence, ensuring 
interpretability while incorporating terrain constraints. Additionally, to 
better capture subtle variations in water occurrence, the final enhanced 
water occurrence data is discretized into 500 levels, compared to the 
original 100 levels. This increase in quantitative levels allows for a more 
precise representation of water occurrence.

After applying all the above processing steps, the final output is 
referred to as the enhanced water occurrence (EWO), denoted as Pewo, 
which integrates both satellite-derived and terrain-based information, 
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ensuring improved accuracy and reliability for subsequent cloud 
reconstruction processing.

3.3. Reconstruction of missing regions in water maps

Following the water extraction and cloud reconstruction methods 
introduced in our previous study (Li et al., 2024a), and with the use of 
the EWO dataset, improved seamless flood maps can be obtained based 
on initial water maps generated using the HLS image time series. Spe
cifically, we conducted high-accuracy water extraction based on HLS 
images using the fine-tuned Prithvi-100M-Sen1Floods11 model 
(Jakubik et al., 2023). This model is a transformer-based deep learning 
architecture pretrained on HLS datasets using the masked autoencoding 
strategy, and it has demonstrated strong generalization across different 
geographic and seasonal conditions. In this study, it was applied to 
generate water maps from HLS images for flood mapping. The generated 
water maps are overlaid with cloud masks extracted from HLS quality 
band to mask out invalid areas due to cloud cover.

These invalid areas caused by clouds and cloud shadows in initial 
water maps are then reconstructed using binary segmentation of the 
EWO data with a confidence threshold that is adaptively determined 
based on the submaximal stability assumption (Li et al., 2024a). This 
assumption is grounded on three key observations: (1) water under 
regular conditions often falls within the range of maximum observed 
extents; (2) water dynamics typically occur in areas with low historical 
occurrence; and (3) cloud cover has a stronger effect on the detection 
confidence of low-occurrence water pixels. Based on this assumption, a 
ratio curve is constructed from the pixel count distributions of water 
occurrence across cloud-free and inundated areas. This curve serves as a 
relative confidence indicator for water presence at different occurrence 
levels. Accordingly, threshold values associated with high-confidence 
levels are determined to assist in filling gaps caused by clouds in the 
initial water maps. Nonetheless, while prior terrain information is 
incorporated into the EWO, it also introduces unwanted noise. This 
noise is primarily due to artifacts in the underlying terrain data (e.g., 
DEM irregularities or HAND inaccuracies), and inconsistencies between 
the spatial patterns of terrain variables and the water occurrence data. 
To mitigate these effects, the derived ratio curve is smoothed using a 
moving-window average filter before being used to determine the 
optimal threshold for reconstruction.

The reconstruction process was performed iteratively using a local 
sliding window, progressively processing each pixel and image, as 
described in our previous study (Li et al., 2024a). Cloud-covered regions 
within water maps were categorized into water (1) or non-water (0) 
classes based on the threshold-based segmentation of EWO. The seg
mentation process is expressed as follows: 

W(x, y) =

{
1, if Pewo(x, y) > T

0,otherwise
(10) 

where Pewo(x, y, t) denotes the enhanced water occurrence of pixel (x,y), 
and T is the optimal segmentation threshold determined within a 
localized window centered on the target location.

Specifically, the segmentation threshold is adaptively determined on 
a per-pixel basis using a localized sliding window. For each cloud- 
covered pixel, the optimal threshold is computed by analyzing the dis
tribution of EWO values within the surrounding window. If the number 
of valid neighboring pixels is insufficient, the window size is progres
sively expanded until a reliable estimate can be made. This multi-scale 
sliding window strategy enables the method to accommodate local 
variability and spatial heterogeneity in water occurrence patterns. In 
cases where a stable local threshold cannot be determined, such as in 
highly noisy or sparsely observed regions, a fallback global threshold 
derived from the overall ratio distribution is applied to ensure 
robustness.

In line with previous studies (Zhao and Gao, 2018; Mullen et al., 

2021), cloud-covered areas with water occurrence values above the 
determined threshold are assumed to be inundated; otherwise, they are 
not. This assumption enables the effective reconstruction of potential 
flooding regions obscured by clouds or lacking valid observations. The 
seamless flood map is finalized after reconstructing cloud-covered re
gions in the initial maps. Additionally, flood-inundated areas are 
extracted by subtracting water extents observed prior to the event, 
which represent maximum extent of water before the flooding event and 
are derived from pre-flood HLS imagery. Consequently, the final flood 
maps include three classes, i.e. floodwater, pre-flood water, and non- 
water.

4. Compared methods

Two methods were used for performance evaluation and comparison 
with the developed reconstruction method in this work. One of them is 
the representative reconstruction method developed by Zhao and Gao 
(2018), which employs GSW water occurrence as auxiliary data to fill 
gaps caused by clouds in water maps derived from contaminated images. 
In addition, the method proposed in our previous study (Li et al., 2024a), 
specifically developed for seamless flood mapping using HLS images and 
GSW water occurrence data, was also compared. Notably, the results by 
Li et al. (2024a) were obtained after cloud reconstruction but without 
applying time-series refinement of water maps, to ensure a fair com
parison. Furthermore, unlike the two compared methods that rely on the 
original GSW water occurrence, the proposed method in this study uti
lizes the enhanced water occurrence (EWO) as its core input.

5. Results

5.1. Quantitative assessment of reconstructed flood maps

To assess the quantitative improvements achieved by Terrain
FloodSense for seamless flood mapping using the generated EWO data, 
we conducted a series of simulated data reconstruction experiments on 
the three flood events. Specifically, cloud-free patches with sizes of 
1000 × 1000 pixels (900 km2) from HLS images during both flood and 
non-flood periods (i.e., before/after floods) were selected from each 
study site. In this study, six HLS images from the three study sites were 
used in simulated data experiments. The corresponding reference water 
maps for the six HLS images were manually labeled with high confi
dence through visual interpretation of cloud-free HLS image patches, 
assisted by high-resolution satellite imagery (e.g., Sentinel-2 and Plan
etScope when available), and validated using local flood reports and 
expert hydrological knowledge. These labeled maps served as reference 
data for validating the accuracy of the reconstructed flood maps. To 
comprehensively simulate varying conditions of cloud cover, three 
cloud cover conditions were defined based on cloud percentages: low 
(less than 30 %), medium (between 30 % and 60 %), and high (greater 
than 60 %). For each cloud cover condition, four real cloud masks with 
varying cloud distributions were randomly generated from the quality 
assessment band of cloudy HLS images after appropriate resampling and 
cropping operations. These real cloud masks were subsequently overlaid 
with each reference water map of the three study sites, resulting in 
cloud-contaminated water maps for reconstruction. Consequently, there 
were 72 groups of simulated reconstruction experiments under three 
different combinations of cloud coverage levels and flood scenarios for 
the three flood events. All simulated cloud-covered water maps under 
varying cloud coverage levels are provided in Fig. A1 of Supplementary 
materials.

Note that the EWO primarily enhances GSW water occurrence (WO) 
in areas characterized by infrequent water presence, which are likely to 
be inundated during extreme flood events, particularly in regions where 
flood inundation has rarely or never been observed. In contrast, EWO 
remains consistent with the original WO in regions with consistently 
high water presence, including permanent and seasonal water bodies. 
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Therefore, in addition to performing accuracy evaluations on the entire 
water map, we divided the areas within each water map into two sce
narios—regular inundation and extreme flooding—to comprehensively 
evaluate the performance of different methods. Specifically: 

• Extreme flooding areas are defined as rarely inundated areas with 
GSW water occurrence values below 5, including areas inundated 
during the studied flood events but never effectively observed by 
Landsat satellites historically (indicated by a GSW water occurrence 
value of zero). Here, inundated areas in the flood events studied are 
represented by the composed maximum water extent map based on 
time series HLS images during the flood period.

• Regular inundation areas are defined as regions in the water map 
excluding the extreme flooding areas defined above. Water dynamics 
in the regular inundation areas are normally caused by seasonal or 
long-term changes, whereas short-term inundation or infrequent 
water dynamics typically occur in extreme flooding areas.

Thus, three scenarios were designed for accuracy evaluations of 
different methods: overall, extreme flooding, and regular inundation. To 
quantitatively evaluate accuracy, the outputs of different reconstruction 
methods were validated using the reference water maps. Five metrics 
were used, including overall accuracy (OA), precision, recall, mIoU, and 
F1-Score. Table 1 provides detailed quantitative evaluation results of 
different methods, where the mean accuracies under each scenario are 
calculated based on 72 groups of simulated data experiments. Addi
tionally, detailed accuracy evaluation results under varying cloud cover 
conditions are provided in Table A1 of supplementary materials. Results 
from overall scenarios show that TerrainFloodSense incorporating EWO 
achieves net gains of 1.24 % and 0.024 with respect to OA and F1-Score 
compared to our method using WO, and larger improvements of 5.31 % 
and 0.086 compared to the method of Zhao and Gao (2018), respec
tively. These improvements are further illustrated in Fig. 3, where 
seamless flood maps reconstructed by different methods are compared 
against ground truths to reveal differences in commission and omission 
errors. It is evident that our method using EWO yields fewer recon
struction errors than the other two baseline approaches. Moreover, the 
proposed method demonstrated substantial improvements over the two 
compared methods in the extreme flooding scenario, with absolute in
creases of 2.95 %–8.86 % in overall accuracy and 0.038–0.087 in F1- 
Score. Also, the proposed method exhibited moderate improvements 
in the regular inundation scenario, with absolute increases of only 0.48 
%–3.57 % in overall accuracy and 0.011–0.076 in F1-Score.

Notably, although Zhao and Gao (2018) demonstrate higher recall 
across all scenarios, this is primarily due to their global thresholding 
strategy, which tends to over-include uncertain pixels, especially in 
flood-prone areas with low GSW water occurrence values. While this 
method enhances recall, it also leads to lower precision, particularly 
under extreme flooding conditions. By contrast, our method leverages 
EWO to better differentiate true inundation from noise, resulting in a 

more balanced reconstruction, improving precision while maintaining 
acceptable recall. Consequently, our method achieves consistently 
higher OA, F1-scores, and mIoU, reflecting more reliable cloud recon
struction in flood mapping.

Generally, simulated data experiments demonstrate that prominent 
improvements in reconstruction accuracy brought by EWO primarily 
originate from the extreme flooding scenario, whereas improvements 
are less significant in regular inundation areas. These results are 
consistent with the motivation and expectation of the proposed method, 
which aims to enhance seamless flood mapping performance, particu
larly under extreme flooding scenarios, by using EWO data compared to 
methods using WO. Nevertheless, it should be noted that the perfor
mance of different methods in the overall scenario is dominated by 
performance under regular inundation conditions, because extreme 
flooding areas in the three tested regions are relatively small. However, 
improvements in the extreme flooding scenario are highly significant for 
flood mapping, especially when more severe flood disasters occur and 
dramatically increase inundation risks for areas that have never or rarely 
been inundated in history due to climate change.

5.2. Application of seamless mapping to large-area extreme floods

To further assess the performance of TerrainFloodSense for seamless 
mapping of large-area floods, we selected the entire tile of the HLS image 
acquired during the flood event that occurred in Rio Grande do Sul, 
Brazil, in 2023 for evaluation. Similarly, the initial water map was ob
tained by combining the cloud/shadow mask from the HLS quality band 
with the water extraction result generated by the fine-tuned Prithvi- 
100M-Sen1Floods11 model (Jakubik et al., 2023). This initial water map 
was then fed into our reconstruction methods using WO and EWO to 
obtain seamless flood maps, respectively. To visually assess the recon
structed results, we compared them against a 3-m resolution Planet
Scope image collected on the same day as the HLS image (September 9, 
2023). Due to an approximately one-hour gap in local time between the 
acquisition of the HLS and PlanetScope images, the cloud cover condi
tions varied between the two images, while flooding conditions were 
assumed to remain similar over such a short period. Certain areas 
covered by clouds in the HLS image but cloud-free in the PlanetScope 
image made it possible to visually validate the reconstructed flood maps 
using the PlanetScope image, despite cloud cover and partial data gaps 
existing in the PlanetScope image. Additionally, the NDVI map derived 
from the PlanetScope image, which effectively distinguishes inundated 
regions from non-water surfaces (Vermote and Saleous, 2007; Zhu and 
Woodcock, 2012), was also utilized to assist in validating inundated 
areas in the reconstructed flood maps. Although other indices like NDWI 
or combined metrics may enhance distinction, NDVI was selected for its 
simplicity and its strong spectral contrast between vegetation and water 
in high-resolution imagery. A visual comparison is shown in Fig. 4, 
where zoomed-in comparisons of local regions that were cloud-free in 
the PlanetScope image were conducted. Note that these visual 

Table 1 
Performance comparison of different cloud reconstruction methods for seamless flood mapping across varying flooding scenarios.

Scenarios Method Overall accuracy Precision Recall mIoU F1-score

Overall Scenario Zhao and Gao (2018) 89.00 % 70.39 % 90.58 % 0.656 0.792
Ours with WO 93.07 % 83.54 % 87.24 % 0.744 0.854
Ours with EWO 94.31 % 87.21 % 88.36 % 0.782 0.878

Extreme Flooding Zhao and Gao (2018) 80.78 % 75.86 % 80.32 % 0.640 0.780
Ours with WO 86.69 % 91.20 % 75.99 % 0.708 0.829
Ours with EWO 89.64 % 95.42 % 79.42 % 0.765 0.867

Regular Inundation Zhao and Gao (2018) 92.88 % 70.16 % 99.93 % 0.701 0.824
Ours with WO 95.96 % 81.81 % 97.51 % 0.801 0.890
Ours with EWO 96.44 % 84.46 % 96.51 % 0.820 0.901
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comparisons aim to qualitatively illustrate reconstruction performance 
at local scales, as large-area quantitative validation remains challenging 
due to the absence of consistent reference data. These comparisons 
further confirmed the accuracy and superiority of the reconstructed 
flood map produced using EWO compared to that produced using WO. 
Particularly, comparisons at two local regions highlighted improve
ments achieved by EWO in reconstructing cloud-covered inundation 
areas under extreme flooding scenarios.

6. Discussion

6.1. Fusing multi-source data for extreme flood mapping

Climate change is intensifying the frequency of extreme flood events, 
posing increased threats to human lives and infrastructure. Real-time 
flood mapping is critical for disaster response and post-flood manage
ment, but in situ data collection during flood events is often impractical. 
While satellite remote sensing offers a powerful solution, its 

Fig. 3. Simulated data experiment results of the compared reconstruction methods for seamless flood mapping over local regions within the three study sites. Note 
that the outputs from the two baseline methods rely on the original GSW water occurrence, while those from the proposed method rely on the enhanced water 
occurrence. Moreover, the results by Li et al. (2024a) were obtained after cloud reconstruction but without applying time-series refinement of water maps to ensure a 
fair comparison. Extreme flooding areas, as defined in the context, are highlighted in red for distinction from regular inundation areas and are shown in the last 
column of the figure for reference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Application of TerrainFloodSense for seamless flood mapping in Rio Grande do Sul, Brazil, on September 29, 2023, and comparisons using the PlanetScope 
image and derived NDVI. Note that the initial GSW water occurrence and the enhanced water occurrence were set at 100 and 500 levels, respectively, but were re- 
mapped to the same 0 %–100 % color range for visual comparisons. Areas exhibiting lower NDVI values typically indicate a greater probability of being inundated.
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effectiveness is significantly constrained by cloud cover, which limits its 
usability for spatiotemporally continuous flood monitoring.

Cloud reconstruction has become essential for improving the conti
nuity of flood mapping using optical satellite images. Existing recon
struction methods mostly rely on either historical water occurrence data 
(Zhao and Gao, 2018; Mullen et al., 2021) or spatiotemporal interpo
lation using cloud-free observations from neighboring dates (Bai et al., 
2022; Huang et al., 2023). However, water occurrence data may be 
highly biased, as extreme floods are rarely observed historically. 
Moreover, water extents normally change dramatically and significantly 
during flood periods over short time scales, making accurate interpo
lation of cloud-covered inundation areas based on temporally adjacent 
observations challenging and unreliable. As a result, conventional WO- 
based methods often struggle to recover inundation areas obscured by 
clouds during extreme flood events.

Multi-source data fusion techniques are useful for addressing limi
tations inherent in single-source data (Albanwan et al., 2024). In this 
study, incorporating additional data containing prior terrain informa
tion can potentially improve extreme flood mapping. Publicly available 
datasets, including DSM, HAND indices, and global hydrological net
works, provide valuable information for identifying flood-prone areas. 
Among them, elevation data has long been fundamental for hydrological 
analysis, offering indirect indicators of inundation probability, espe
cially useful when valid satellite observations are unavailable. As 
demonstrated by the proposed method, the fusion of direct satellite 
observations with terrain-derived inundation probability data is a 
promising direction to enhance future flood mapping, particularly under 
extreme flooding scenarios.

In addition, combining SAR and optical imagery can be highly 
beneficial for improving flood mapping, particularly since SAR is not 
affected by cloud cover and provides consistent observations regardless 
of weather conditions (Martinis et al., 2022; Fichtner et al., 2023). 
Integrating SAR with optical time series could further enhance the 
temporal continuity and reliability of flood monitoring, especially dur
ing periods of persistent cloud cover (Li et al., 2024a). However, SAR 
data often suffers from speckle noise and shows reduced reliability in 
urban or densely vegetated areas. Moreover, due to differences in im
aging mechanisms between SAR and optical sensors, inconsistencies 
may arise in the extracted water extents (Li et al., 2024a), highlighting 
the need for effective strategies to harmonize results from both data 
sources. Our method, which incorporates terrain-derived probabilistic 
priors, can complement SAR-optical fusion by guiding the reconstruc
tion process where either data source alone may be insufficient. More
over, airborne platforms such as UAVs offer valuable high-resolution 
data for local flood monitoring, assessment, and validation (Fawakherji 
and Hashemi-Beni, 2025; Li et al., 2025). These platforms can capture 
detailed inundation features that are often missed by satellite sensors. 
Nevertheless, their operational use is generally limited to small spatial 
extents and post-event scenarios due to cost, logistics, and coverage 
constraints. Therefore, while satellite data fusion offers an efficient so
lution for large-scale flood mapping, future research may benefit from 
exploring integrated frameworks that combine satellite, airborne, and 
in-situ data to improve accuracy and coverage, particularly in regions 
with complex hydrodynamics or human-made structures.

6.2. Benefits of cloud reconstruction for flood mapping

Currently available optical satellite data sources are more abundant 
than SAR data sources for flood monitoring, thus providing more 
frequent observational data, which, however, must overcome limita
tions imposed by cloud cover. Flood disasters occur mostly under cloudy 
and rainy weather conditions, making valid observations of large-area 
flood extents by optical satellites challenging. To leverage incomplete 
observational data for emergency flood mapping in support of disaster 
response and impact assessment, cloud reconstruction methods are ur
gently needed, especially when there are no other cloud-free optical 

satellite images or SAR images available. Both previous studies (Bai 
et al., 2022; Huang et al., 2023; Li et al., 2024a) and this study 
demonstrate that cloud reconstruction can significantly enhance the 
continuity of time series water or flood mapping with optical satellite 
images, even in cases with limited cloud-free observations. The benefit 
of cloud reconstruction for flood mapping lies not only in providing 
seamless flood maps but also in enhancing the accuracy of estimates of 
peak flood extents and flood durations, which are vital for post-disaster 
impact assessment (Bofana et al., 2022). Fig. 5 illustrates comparisons of 
flood duration maps of Rio Grande do Sul, Brazil, during the 2023 flood 
event composed with and without consideration of cloud cover effects. 
The comparisons underscore significant spatial inconsistencies and un
derestimation errors associated with flood duration maps composed 
without considering cloud cover effects, as highlighted by red circles. 
These issues arise due to gaps caused by clouds in time-series flood 
maps. Consequently, there will be non-negligible uncertainties in 
composed maximum flood extent and flood duration maps without 
considering cloud cover effects, which require attention when using 
optical satellite images for flood monitoring. Such issues necessitate 
cloud reconstruction to mitigate uncertainties in composed flood maps. 
Undoubtedly, cloud reconstruction benefits continuous flood observa
tion, enabling better support for disaster management and impact 
assessment.

6.3. Limitations

Compared with previous cloud reconstruction or interpolation-based 
methods (e.g., Zhao and Gao, 2018; Bai et al., 2023), the proposed 
method offers notable advantages by fusing terrain information (DSM 
and HAND) with historical water occurrence. This fusion provides a 
physically-informed prior that supports more robust flood mapping, 
particularly under extreme flooding scenarios with sparse optical ob
servations. In addition, the adaptive local thresholding strategy based on 
submaximal stability facilitates the accurate reconstruction of fine-scale 
inundation patterns that are often not recovered by conventional global 
or fixed-threshold approaches. Despite these strengths, several limita
tions related to the dataset and methodology remain and require further 
consideration.

First, the precision of the generated EWO data is subject to the 
quality of the DSM data used. Due to resolution constraints and inherent 
errors in the DSM dataset (ALOS DSM), uncertainties exist in the terrain 
data (Takaku et al., 2016). These uncertainties cause inconsistencies 
between inundation probabilities inferred from terrain data and the real 
inundation extent observed by satellites. Furthermore, such un
certainties introduce biases into the generated EWO data, subsequently 
reducing the reliability of reconstructed flood maps. To constrain these 
negative biases, the enhancement of water occurrence is only applied to 
areas exhibiting low water occurrence values that are likely to be 
inundated during extreme flood events. In our experiments, as shown in 
Fig. 6, one case illustrates that our proposed method may not perform 
well, particularly in regions lacking elevation details due to DSM data 
quality issues. To clearly identify areas where the EWO data contains 
substantial uncertainties, we overlaid the satellite-observed flood map 
on the visualized DSM, HAND, and EWO data. The locally inconsistent 
areas, where inundation was observed by satellites but EWO failed to 
indicate significant inundation probability, are highlighted by the yel
low circle in Fig. 6. These inconsistencies between EWO and satellite- 
observed flood extents arise from DSM data uncertainties, as illus
trated by the absence of significant elevation changes in inconsistent 
regions. This limitation of the proposed method can only be mitigated by 
using alternative DSM datasets with higher resolution and better quality.

Second, only two terrain indices, i.e., DSM and derived HAND, were 
involved in the fusion with water occurrence to generate EWO. While 
the proposed fusion of multi-source data effectively incorporates terrain 
and associated hydrological information into satellite observation- 
derived water occurrence data, it primarily considers statistical 
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inundation probability priors without explicitly capturing complex hy
drological and hydrodynamic processes. Generally, areas with lower 
elevations in DSM and lower HAND values exhibit higher flood sus
ceptibility. However, exceptions exist in real-world conditions that do 
not align well with this general trend, such as areas with above-ground 
rivers or artificial structures. Such exceptions potentially introduce 
biases in the EWO data. Thus, while the proposed Bayesian fusion 
approach is effective, it requires further improvement through incor
poration of local hydro-physical processes to achieve greater accuracy in 
seamless flood mapping.

7. Conclusions

Optical satellites can provide abundant data sources for flood 
monitoring, complementing SAR imagery and improving observation 
frequency. However, their useability is notably constrained by cloud 
cover, which necessitates the use of cloud reconstruction techniques to 

produce seamless flood maps for timely disaster response.
This study introduced TerrainFloodSense, an improved seamless 

flood mapping method that fuses historical water occurrence data with 
terrain indices (DSM and HAND) to enhance cloud reconstruction per
formance in extreme flood events. Both simulated experiments and ap
plications confirmed the superiority of TerrainFloodSense, achieving 
absolute improvements of 2.95 %–8.86 % in overall accuracy and 
0.038–0.087 in F1-Score under extreme flooding scenarios. Addition
ally, the proposed method maintained similar performance with 
benchmarks in regular inundation scenarios. Unlike the previous study 
(Li et al., 2024a), the proposed method reduces dependence on the 
spatiotemporal continuity of satellite observations and improves 
robustness in regions with sparse or no historical inundation records. 
These improvements validate the capability of TerrainFloodSense to 
support high-quality seamless flood mapping for future extreme events.

This study highlights the value of multi-source data fusion, particu
larly integrating satellite observations with terrain-derived indices, for 

Fig. 5. Comparisons of satellite-estimated flood duration maps of Rio Grande do Sul, Brazil, during the 2023 flood event composed without (upper subfigure) and 
with (lower subfigure) considering cloud cover effects. Note that the flood duration maps were composed based on water maps derived from 21 HLS images collected 
from August 30 to November 6, 2023. Cloud cover in optical satellite image time series leads to significant spatial inconsistencies and underestimation errors in the 
composed flood duration map (upper subfigure). Cloud cover effects in the lower subfigure were effectively mitigated by applying cloud reconstruction to fill gaps 
caused by clouds in the time-series flood maps.
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improving seamless flood mapping. It also discusses the complementary 
potential of SAR-optical data fusion approaches, especially under 
persistent cloud cover. Additionally, this study confirmed the value of 
applying cloud reconstruction to flood mapping with optical satellite 
imagery, emphasizing its importance in reducing cloud cover effects in 
composed flood maps such as flood duration maps. However, the iden
tified limitations of the proposed method suggest the necessity for high- 
resolution terrain data to further reduce uncertainties in reconstructed 
seamless flood maps.

Moreover, future research could explore the integration of satellite, 
airborne, and in-situ observations to enhance the accuracy and spatial 
detail of flood mapping in complex terrains or urbanized regions. In 
addition, future efforts should focus on enhancing the fusion process by 
incorporating local hydro-physical processes to better account for de
viations from terrain-based flood susceptibility patterns, thereby 
improving seamless flood mapping capability in the context of increas
ingly severe flood risks.
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