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A Unified Cloud Detection Method for Suomi-NPP
VIIRS Day and Night PAN Imagery
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Abstract— Cloud detection is a necessary step before the
application of remote sensing images. However, the radiation
intensity similarity between artificial lights and clouds is higher
in nighttime remote sensing images than in daytime remote
sensing images, making it difficult to distinguish artificial lights
from clouds. This article proposes a deep learning method called
multifeature fusion for cloud detection network (MFFCD-Net) to
detect clouds in daytime and nighttime remote sensing images. A
dilated residual upsampling module was designed for upsampling
feature maps while enlarging the receptive field. A multi-
scale feature-extraction fusion module (MFEF) was designed to
enhance the ability to distinguish regular textures of artificial
lights from random textures of clouds. Moreover, an adaptive
feature-fusion module (AFF) was designed to select and fuse the
feature in the encoding stage and decoding stage, thus improving
the cloud detection accuracy. To the best of our knowledge, this
is the first time that a method is designed for cloud detection
in both daytime and nighttime remote sensing images. The
experimental results on Suomi-NPP Visible Infrared Imaging
Radiometer Suite (VIIRS) of the panchromatic (PAN) day/night
band (DNB) images show that MFFCD-Net could obtain a better
balance in commission and omission rates than baseline methods
(92.3% versus 90.5% on the F1-score) in daytime remote sensing
images. Although artificial lights introduce strong interference
in nighttime remote sensing images, MFFCD-Net can better
distinguish artificial lights from clouds than baseline methods
(90.8% versus 88.4% on the F1-score). The results indicate that
MFFCD-Net is promising for cloud detection both in daytime and
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nighttime remote sensing images. The source code and dataset
are available at https://github.com/Neooolee/MFFCD-Net.

Index Terms— Adaptive feature fusion, cloud detection, day-
time and nighttime remote sensing, deep learning, multiscale
feature-extraction fusion (MFEF).

I. INTRODUCTION

SATELLITE sensors collect data related to electromagnetic
waves in different bands to form satellite remote sensing

images, and they use the collected information to accomplish
tasks, such as feature identification, target detection, target
tracking, and disaster warning. Satellite remote sensing images
are inevitably affected by cloud cover, and a data analysis by
the International Satellite Cloud Climatology Project (ISCCP)
indicated that 67% of the world is covered by clouds [1]. Most
remote sensing applications rely on ground surface informa-
tion. However, because the image features are obscured by
clouds, the radiation information reflected from the surface is
not accurately received by the satellite sensors, and the spectral
information of the features is altered, which affects the usable
information of the optical remote sensing images and poses
a great obstacle to subsequent applications [2]. In addition,
remote sensing images covered by a large number of clouds
could be used for the analysis of cloud statistics and properties,
which are very useful for monitoring weather and climate.
Therefore, cloud detection of satellite remote sensing images
is an indispensable preprocessing step in remote sensing image
processing and plays an important role in the subsequent
application of remote sensing images.

In previous decades, scholars have carried out extensive
research on daytime remote sensing image cloud detec-
tion [3], [4], [5], [6], [7]. The cloud detection methods in
these works are mainly categorized into four types: physical
rule-based methods, multitemporal-based methods, machine
learning-based methods, and deep learning-based methods [8].

Physical rule-based cloud detection methods use the char-
acteristics of the high reflectivity and low temperature of a
cloud layer to set different rules for different spectral channels
to realize cloud detection [9], [10], [11]. Fmask has been
widely used for cloud detection in Landsat 7–9 [12]. It set
several rules combining different bands to distinguish cloud
from different backgrounds. Parmes et al. [13] developed a
rule-based method for Suomi-NPP Visible Infrared Imaging
Radiometer Suite (VIIRS) images based on spectral analysis of

1558-0644 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on December 20,2024 at 09:52:30 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0941-8713
https://orcid.org/0000-0002-7913-2625
https://orcid.org/0000-0003-4350-8974
https://orcid.org/0000-0001-5890-0691
https://orcid.org/0000-0001-5635-8499
https://orcid.org/0000-0002-2656-001X


4106913 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

clouds, shadows, snow, and water pixels. This method reached
94.2% correct detection rates and 11.1% false alarms for cloud
detection. Physical rule-based methods mainly utilize cloud
and surface spectral analysis to achieve cloud detection, which
is simple and easy to use. However, the selection of physical
rules relies on empirical judgment and parameter sensitivity
analysis.

In image time series of the same region, cloud coverage
can lead to sudden changes in reflectivity, so multitemporal-
based methods identify clouds by comparing the reflectivity
differences between cloud pixels and clear-sky pixels [14].
Hagolle et al. [15] identified clouds through the detection of
the reflectivity surge in the blue band pixel by pixel, and they
combined this identification with the correlation of neighbor-
ing pixels in multitemporal images. The Tmask method [16]
utilizes Landsat time-series information to construct an appar-
ent reflectance prediction model, and it utilizes the difference
between the predicted and the imaged reflectance of the pixel
to perform cloud detection. Multitemporal-based methods
combine spectral information and temporal information, which
can improve the accuracy of cloud detection. However, the
performance multitemporal-based method is highly dependent
on the time series, while misidentification of clouds and
surfaces occurs for regions with significant changes in surface
types.

Machine learning-based cloud detection methods consider
cloud identification as a classification problem (often binary).
Supervised learning mainly includes support vector machine
(SVM) [17], decision tree [18], Bayesian [19], and random
forest (RF) [20]. Unsupervised learning includes principal
component analysis (PCA) [21] and singular value decom-
position (SVD) [22], which have been widely used in
remote sensing image cloud detection research. Machine
learning methods usually need to design features manually.
The model extracts limited information and cannot access
advanced semantic information. The machine learning-based
cloud detection method synthesizes the spectral and spatial
features of a cloud and surface to achieve automatic cloud
detection.

Deep learning networks have been widely used in cloud
detection tasks recently. Compared to the traditional cloud
detection methods, U-Net [23], SegNet [24], DeepLabV3+

[25], and other deep learning cloud detection methods have
a better cloud recognition ability and, at the same time, can
improve the efficiency of cloud detection [26], [27], [28],
[29], [30], [31]. Li et al. [27] designed a novel multiscale
feature-fusion module that fuses features of different scales
into output for cloud detection in remote sensing images
from different sensors. Self-attention mechanism has been
proven effective in computer vision tasks and applied on
cloud detection. Zhang et al. [32] proposed a cloud vision
transformer (CloudViT) that utilizes dark channel priors in
multispectral imagery to guide the network to learn features.
Ma et al. [33] combined the strengths of both transformer
and convolutional neural networks (CNNs) to extract local
and global features with dual branches. One branch processes
cloud images, and the other processes the differential image
between cloud and corresponding cloud-free images.

In recent years, nighttime remote sensing images have been
widely used and are important data for monitoring human
activities, such as urbanization, disaster evaluation, and wars.
Clouds and artificial lights have high brightness, which makes
it difficult to distinguish them in nighttime remote sensing
images. This will influence the application of nighttime remote
sensing images. Thus, accurately detecting clouds in nighttime
remote sensing images is very necessary and important.

Fewer works studied cloud detection in nighttime remote
sensing images. Obregon et al. [34] improved the existing
MODIS cloud-masking algorithm by using the brightness
temperature differences between thermal and mid-infrared (IR)
bands to achieve highly accurate identification of nighttime
underlying clouds while reducing the false detection rate from
44.2% to 16.3%. In order to improve the cloud detection
accuracy of MODIS cloud mask algorithm in polar region
at nighttime, a 7.2-µm water vapor band and a 14.2-µm
carbon dioxide band were involved in a few new physical rules
[35]. Taking cloud product from Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) as a reference, Yang et al.
[36] constructed an XGBoost machine learning model for
cloud retrieval of day and night remote sensing images by
using the brightness temperature of ten thermal IR channels
with central wavelengths ranging from 3.9 to 13.3 µm in
advanced Himawari imager (AHI) onboard the Himawari-8
satellite. Liu et al. [37] also took CALIOP cloud product as
the reference of AHI images. The brightness temperatures of
eight thermal bands are put into the RF algorithm for cloud
detection in nighttime images. The brightness temperature
differences between 3.7-, 11-, and 12-µm bands were used to
obtain the cloud confidence of a pixel in Visible and Infrared
Radiometer (VIRR) onboard the Chinese Feng Yun 3 (FY-3)
satellite [38]. Three threshold test groups were designed and
combined for cloud detection in different land cover types.
Merchant et al. [39] designed a Bayesian approach using ther-
mal IR spectral information of 3.7, 11, and 12 µm and texture
features for cloud detection in nighttime image acquired by
Along Track Scanning Radiometers 2 (ATSR-2). Visible and
near-IR band and thermal IR band of Defense Meteorological
Satellite Program (DMPS) are put into integrated active con-
tour (IAC) model for cloud detection in nighttime images [40].
The results on two channels are not uniform, because they only
used the gray-level information, ignoring the texture and shape
information. Wang et al. [41] used CALIOP cloud product
and three VIIRS IR bands (8.6, 11, and 12 µm) to train an
all-day RF model for cloud detection in both daytime and
nighttime remote sensing images. It only used the spectral
information of these bands. Focusing on urban areas, Joachim
and Storch [42] used the enterprise cloud mask (ECM) [43] for
DNB RF cloud detection algorithm for nighttime panchromatic
(PAN) day/night band (DNB) images, which achieved better
detection results in urban areas.

Although the current research on cloud detection in daytime
and nighttime remote sensing images has made great progress.
Most methods take multispectral bands as input. Methods for
nighttime cloud detection only use spectral information while
ignoring the spatial and texture information. There are far
few works on daytime and nighttime cloud detection for PAN
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DNB images. The main difficulties for cloud detection in DNB
images are given as follows.

1) Since the VIIRS DNB image is PAN image, there is little
spectral feature in the DNB image. The complexity of
the cloud structure and different scales of clouds have
different boundary scales leading to the omission and
misdetection of fragmented clouds as well as clouds with
smaller scales.

2) The brightness of clouds and artificial lights is very sim-
ilar in nighttime remote sensing images, which increases
the difficulty of distinguishing lights from clouds in
nighttime images with only PAN band. Artificial lights
may be recognized as point clouds.

Aiming at addressing the abovementioned problems,
we propose multifeature fusion for cloud detection network
(MFFCD-Net) to realize cloud detection in daytime and night-
time DNB images in the same architecture for the first time.
By analyzing the difference between daytime and nighttime
images, three modules were designed in MFFCD-Net to
improve the cloud detection accuracy in nighttime images.
MFFCD-Net is based on an encoder–decoder architecture that
acquires the multiscale information of the image through
the multiscale feature-extraction module (MFEF Module)
and associates the shallow detail features with the distin-
guishing features of lights and clouds through the adaptive
feature-fusion module (AFF module) to achieve a better cloud
detection effect. The main contributions of this article are
given as follows.

1) An MFEF module is designed to extract multiscale
information and select noteworthy cloud information from
different scale feature maps, thus improving the network’s
ability to focus on the spatial background region that is most
relevant to clouds. In addition, a dilated residual upsampling
module (DR-UP) block is designed in the decoding stage to
expand the network receptive field so that the network can
capture cloud features at a large scale.

2) At night, the MFEF module can capture the large-scale
features of urban lights and more dispersed lights in rural
areas, filter and optimize the multiscale feature maps,
strengthen the model’s ability to recognize regular textures
of urban lights and random textures of clouds, and reduce the
misdetection rate of lights. The edge-detail information in the
encoding stage and the feature information after filtering out
lights in the decoding stage are fused by the AFF module
to achieve better cloud-boundary segmentation accuracy and
lighting discrimination.

3) Addressing the lack of manually labeled nighttime remote
sensing cloud mask datasets, an NUAA-DNB-CD dataset,
in which 18 daytime and four nighttime VIIRS DNB images
were manually labeled, is produced. Images and corresponding
cloud masks in NUAA-DNB-CD were clipped into small
patches with size of 256 × 256, and a total of 14 894 256
× 256 cloud mask patches were obtained after expansion,
including 2708 cloud mask patches for nighttime remote
sensing images.

The rest of this article is organized as follows. Section II
presents the experiment data. Section III introduces the pro-
posed MFFCD-Net method. The experimental results and

discussion are shown in Section IV, and conclusions are
presented in Section V.

II. DATA

A. VIIRS of the PAN DNB Imagery

The VIIRS is the key multispectral imager onboard the
Suomi-NPP satellite. VIIRS collects radiometric images of
the atmosphere, land, and oceans in different channels, such
as visible and IR bands. The VIIRS sensor has a total of
22 bands: five I-bands at 370-m spatial resolution, one DNB,
and 16 M-bands at 750-m spatial resolution. Two observations
can be obtained every day globally. In addition to inheriting
the band characteristics of sensors, such as MODIS and
AVHRR, and improving the signal-to-noise ratio and spatial
resolution of the data, VIIRS has effective control of the spatial
resolution, which increases with the increase of the scanning
angle. This represents the biggest improvement of VIIRS on
the data quality of polar-orbiting environmental satellites.

The DNB is PAN image and a revolutionary remote sensing
technology that is capable of capturing details of the Earth’s
surface under day and night conditions. The main differences
between day and night imaging modes are the lighting condi-
tions and the adaptability of the imaging technology. During
daytime, the DNB relies on the Sun as the primary light source
to capture reflected radiation from the surface and atmosphere.
Daytime imaging mainly utilizes radiation in the visible-to-
near-IR wavelength range in the DNB. At night, the DNB
demonstrates its unique low-light imaging capability. In the
night mode, it relies on moonlight, starlight, and artificial light
sources on the Earth’s surface for imaging. Nighttime imagery
is characterized by the ability to capture surface features,
such as city lights, fires, ships, and other signs of human
activity, despite extremely low-light conditions. Compared
with daytime, nighttime images are dimmer and have less
contrast, but they still reveal the patterns and geographic
distribution of human activity. The DNB has a spectral range
of 500–900 nm, covering a portion of the spectrum from the
visible to the near-IR. Unlike conventional multiband sensors,
DNB provides highly sensitive optical imaging through a
single band, both during the day and at night. This wavelength
setup allows the DNB to operate continuously under varying
light conditions, providing all-weather Earth observation data.

In the DNB-image analysis of the VIIRS sensor, artificial
lights at night are usually characterized by bright spots with
clear boundaries and regular shapes, which significantly reflect
the distribution of human activities, such as the layout of
road networks and urban center areas. In contrast, clouds
in remote sensing images show obvious irregularities and
a diffuse nature, usually covering large areas with blurred
edges. In terms of spectral characteristics, even in grayscale
images, artificial lights appear as relatively uniform and bright
areas, while light reflected from clouds is relatively darker,
with lower brightness and more uniform tonal distribution.
By utilizing these features, we can design algorithms to make
the network more effective in focusing on and distinguishing
between these two different elements, thereby improving the
interpretation accuracy of nighttime remote sensing images.
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TABLE I
DETAILS OF TRAINING AND TESTING DATASETS (NUMBER OF PATCHES)

Fig. 1. Examples of manually labeled cloud masks for daytime and nighttime
remote sensing images. (a) Daytime 1. (b) Daytime 2. (c) Nighttime 1.
(d) Nighttime 2.

B. NUAA-DNB-CD Dataset

Owing to the lack of manually labeled cloud mask datasets
of nighttime remote sensing images, we produced a cloud
mask dataset of day–night remote sensing images by manual
labeling. The remote sensing data captured by the DNB of the
VIIRS onboard the Suomi NPP satellite were mainly used,
covering bare ground and ocean, for example. A total of
18 daytime images and four nighttime images were manually
labeled for training and testing. Each DNB image was pro-
cessed by three experts in this field to produce cloud mask.
The DNB image was labeled by one expert, and then, the
manually labeled cloud mask will be checked and corrected
by the other two experts. For controversial region, if both 2 or
more experts classify it as cloud, this region will be labeled
as cloud, and otherwise, it will be labeled as background. The
size of each image is about 4064 × 3072 pixels. Among these
images, four daytime images and one nighttime image were
used to test the model’s accuracy, and the rest were used to
train the model. The images were clipped into small patches
with 256 × 256 pixels, and 50% overlap was set between
every two patches. The details of training and testing patches
are presented in Table I. Four manually labeled examples are
shown in Fig. 1, where black pixels indicate noncloudy regions
and white pixels indicate cloudy regions.

III. METHODOLOGY

A. Overview of MFFCD-Net

The overall architecture of MFFCD-Net designed in this
article is shown in Fig. 2. MFFCD-Net is designed based on an
encoder–decoder architecture. The encoder adopts Resnet50 as
the backbone network to extract the features at different layers,
and the decoder recovers the image features and dimensions
from the fused multiscale feature maps by means of the dilated
residual module upsampling (DR-UP). Each DR-UP Block is
composed of three convolutional layers with different dilated
rates and one upsampling layer, and the DR-UP Block expands

the feature-sensing field of the network while recovering the
image size. The multiscale feature-extraction fusion module
(MFEF) module is added to the bottom layer of the encoder
to mine the multiscale information of the feature map and
improve the network’s ability to recognize the fragmented
clouds as well as the clouds with different boundary scales.
To better realize the combination of shallow and deep features,
we replaced the traditional simple skip-connection structure
with an adaptive feature-fusion module (AFF), which fuses the
edge-detail information of different scales and the feature maps
after the MFEF module processing to discriminate the lights,
thus improving the cloud-boundary segmentation accuracy and
lighting discrimination effect.

B. DR-UP

Traditional convolution aims to use a convolution kernel to
perform a convolution operation on the neighboring elements
in the tensor, while the dilated convolution can be convolved
on two nonneighboring elements, which can increase the
convolution kernel’s receptive field and reduce the amount of
computation. Different expansion rates have different receptive
fields, and multiscale features can be extracted so that the
network can capture cloud features at different scales. The
receptive fields of different convolutional expansion rates are
shown in Fig. 3. The DR-UP Block was designed in the
decoder by combining the dilated convolution and upsampling
layers, and the DR-UP Block consists of three dilated convo-
lution layers and one upsampling layer. The kernel size of
all layers is set to 3 × 3 in the DR-UP Block. The same
dilated rate of adjacent dilated convolutional layers leads to
the problem of a discontinuous convolution center. To solve
this problem, we designed the dilated rate as a cyclic sawtooth
structure of [1], [2], [5]. Fig. 3 shows the structure of the
DR-UP Block designed in this article.

C. MFEF

In nighttime remote sensing image cloud detection, the
high radiation intensity of artificial lights and their similar-
ity in color to clouds often leads to their misidentification
as clouds. However, the regular arrangement and consistent
brightness of lights provide discriminative features between
lights and clouds for nighttime cloud detection. In view of
this, we designed an MFEF module, which consists of two
parts: a multiscale spatial pyramid and a multiscale feature
selection module. In the multiscale spatial pyramid, multilevel
features are extracted through hollow convolutional layers
with different expansion rates and global pooling operations,
allowing the network to capture large-scale urban lights and
more dispersed rural area lights. Subsequently, the multiscale
feature selection module is used to filter the multiscale feature
maps and optimize the model to recognize the regular texture
of city lights and the random texture of clouds. The MFEF
module realizes the distinction between lights and clouds,
significantly improves the accuracy of cloud detection in
nighttime remote sensing images, and provides new perspec-
tives and methods for solving similar remote sensing image
processing problems. In addition, the MFEF module designed
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Fig. 2. Overall architecture of multiscale feature-fusion cloud detection network (MFFCD-Net).

Fig. 3. Structure of DR-UP block.

in this article aims to improve performance in nighttime cloud
detection and simultaneously optimize the ability to capture
clouds at different scales during daytime. This is attributed to
its multiscale spatial pyramid and feature selection mechanism,
which enables the module to accurately recognize and distin-
guish clouds of different scales and types. This advancement
significantly improves the network’s cloud identification and
classification performance in daytime environments, and it
enhances the model’s application flexibility and robustness
under different environmental conditions.

D. AFF

Global features and interpixel correlation in the image play
an important role in target recognition, and the lack of global
information leads to the loss of effective recognition features
for clouds and background, affecting cloud detection accuracy.
Since the feature map processed by the encoder residual
module may be from background information, and although
the feature map processed by the MFEF module can achieve
better separation of clouds and the background, the use of
the dilated convolution in the decoder results in the loss of
some of the detailed features. This lack of information leads
to the model encountering difficulties in recognizing the subtle
differences between the cloud and the background, which
affects the segmentation of the cloud-boundary effectiveness.
In the decoding stage, it is necessary to effectively utilize
the multilayer contextual information acquired by the network
in the encoding stage as well as the semantic information
extracted from the deep network. Therefore, the network adds
an AFF between the encoder and the decoder to combine
shallow spatial information and deep semantic information.

The structure of the AFF is shown in Fig. 5. The input image
retains a lot of background information after the encoder,
especially the high-bright artificial lights, which brings inter-
ference, and it loses part of the feature information after the

decoder owing to the use of the dilated convolution. There are
two input branches in the AFF module. One is for feature from
encoder and the other is for feature from decoder. Features
from encoder have a limited receptive field, but features from
decoder have multiscale receptive field. Thus, two 1 × 1
Conv are used to select useful features in different branches.
The 3 × 3 Conv is used to fuse the local and multiscale
features from the encoder and decoder. The selected features
and fused features are summed to produce the final result.
In this way, AFF can fuse features from the encoder and
decoder adaptively. Through the design of AFF to integrate
the detail information in the encoding stage with the multiscale
features after separating the lights through the processing of
the MFEF module, we aim to achieve a better cloud-boundary
segmentation effect while filtering out the lights.

The cross-entropy loss function [44] has proved very effec-
tive in image segmentation task [31], [45], [46], [47] and thus
was used as the loss function of MFFCD-Net

L = −
1

w × h

w∑
i=1

h∑
j=1

(
yi, j ln ȳi, j +

(
1 − yi, j

)
ln

(
1 − ȳi, j

))
(1)

where y is the reference cloud mask; ȳ is the predicted mask;
and w and h are the width and height of the reference mask,
respectively.

E. Experimental Setting

1) Hyperparameters Setting: The experiments in this article
were conducted on a manually labeled cloud mask dataset of
day and night remote sensing imagery, and the equipment used
for the experiments was given as follows: CPU, Intel Core
i5-12400F, and GPU, NVIDIA GeForce RTX 3060Ti. The
experiments and network development were conducted using
Python 3.7 and Pytorch 1.7.1. In this article, we used the Adam
optimizer to train the network. The maximum learning rate was
set to 0.0001, training to convergence to reduce the learning
rate for training; the minimum learning rate was 0.000001, the
batch_size was set to 2, and the epoch was set to 100.

2) Accuracy Metrics: In order to evaluate the perfor-
mance of cloud detection methods quantitatively, four accuracy
metrics were selected: overall accuracy (OA), precision or
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Fig. 4. Structure of MFEF module.

Fig. 5. Structure of AFF module.

producer’s accuracy (PA), recall or user’s accuracy (UA),
and F1-score. The formulas of accuracy metrics are given as
follows:

OA =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-score =
2 × Precision × Recall

Precision + Recall
(5)

where TP is the true positive, indicating the number of
originally cloudy predictions that are also cloudy; TN is the
true negative, indicating the number of original background
predictions that are also background; FP is the false negative,
indicating the number of original background predictions that

are incorrectly predicted to be cloudy; and FN is the false
negative, indicating the number of original clouds incorrectly
predicted to be background. The higher of the four evaluation
metrics in the testing phase indicates higher accuracy.

F. Baseline Methods

Cloud detection in VIIRS DNB images is a domain of
research that has not yet been explored, which restricts the
applicability of state-of-the-art cloud detection methods. For
example, Zhang et al. [32] require a dark channel image and
at least two bands. Ma et al. [33] require paired cloudy/cloud-
free images, but there is no such dataset for DNB images
yet, and they are challenging to annotate especially at night-
time. Even rule-based methods are usually constructed upon
thresholds using several spectral bands to discriminate clouds
from different land cover classes. Thus, many state-of-the-art
cloud detection methods cannot yet be applied to this research
domain as such.

To evaluate the performance of the method proposed in
this article, we selected seven methods for comparison with
the method proposed in this article, including U-Net [23],
Deeplab-v3+ [31] CDnetv2 [48], CloudU-Net [49] Improved
deeplabv3+ [50], and RD-Unet [51]. CDNetV2 combines
multiple attention mechanisms to adaptively fuse multiscale
features to achieve better cloud detection results. More-
over, it provides cloud location information for abstract
features through an advanced semantic information-guided
flow. Shi et al. [49] utilized dilated convolution to improve
the network-sensing field and optimized the network output
by combining fully connected CRF to construct a CloudU-Net
network for daytime and nighttime cloud detection task. How-
ever, CloudU-Net is designed to be trained on ground-based
images. They compared it with the current state-of-the-art
semantic segmentation network, and the improved model
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TABLE II
COMPARISON OF PREDICTION ACCURACY OF DIFFERENT METHODS

AT DAYTIME. THE BEST VALUES ARE MARKED IN BOLD

showed better cloud detection results. Improved deeplabv3+

(called IDeeplabv3+) introduced an improved Xception back-
bone network and CBAM (convolutional block attention
module) into Deeplabv3+ to enhance the model capability.
RD-UNet designed a residual path to cascade two U-shaped
networks for information flow from the first network to the sec-
ond network. All methods were trained on daytime/nighttime
images. In our experiments, we also merged daytime and
nighttime images for training and then tested on daytime or
nighttime images separately.

IV. EXPERIMENTAL RESULTS

A. Results at Daytime

The performance of different methods at daytime on the
evaluation metrics is shown in Table II. As can be seen in
Table II, the overall accuracy (OA), precision, recall, and F1-
score of MFFCD-Net in daytime image cloud detection were
92.1%, 90.8%, 93.9%, and 92.3%, respectively. MFFCD-Net
got higher OA and F1-score than those of the comparison
methods, but ranked the second in precision and recall.
Although IDeeplabv3+ obtained the highest recall, it got the
lowest precision. This means that IDeeplabv3+ will classify
more background as cloud. RD-UNet has the highest preci-
sion but lowest recall among all methods. This means that
RD-UNet will classify more cloud as background. Through
the quantitative analysis, it was shown that MFFCD-Net could
effectively realize cloud detection in daytime remote sensing
images and substantially improve the cloud detection accuracy.

Fig. 6 shows the comparison results of cloud detection
by MFFCD-Net and other methods for daytime remote sens-
ing images in the test set. Fig. 6(a) shows both large-scale
thick clouds and small-scale broken clouds, and MFFCD-Net
achieved better boundary segmentation of large-scale clouds
and higher detection accuracy of small-scale broken clouds
compared with the comparison methods. In Fig. 6(b), there is
a large thick cloud, and at the same time, its cloud boundary is
more complicated. MFFCD-Net had the best cloud-boundary
segmentation delineation. In Fig. 6(c), there is a large area of
tiny broken clouds, and MFFCD-Net could comprehensively
capture the broken clouds in the figure with a lower false
detection rate. In Fig. 6(d), there are long thick clouds, broken
clouds, and thin clouds at the same time, and there is a
cavity in the thin cloud underneath. MFFCD-Net had the best
detection results in all three types of clouds compared with the
comparison methods. Overall, U-Net, Deeplab-v3+, CDnetv2,
and IDeeplabv3+ had a large number of misdetections in

their detection results and were not accurate in recognizing
cloud boundaries. CloudU-Net and RD-UNet did not have
a large number of misdetections, but they still missed the
detection of thin clouds and had poor segmentation of broken
clouds. MFFCD-Net obtains the best detection results among
all methods.

B. Results at Nighttime

The performance of different methods at daytime on the
evaluation metrics is shown in Table III. As can be seen
in Table III, the OA, precision, recall, and F1-score of
MFFCD-Net in daytime image cloud detection are 90.4%,
90.2%, 91.5%, and 90.8%, respectively, which are higher than
those of all baseline methods except lower than IDeeplabv3+

in recall. However, IDeeplabv3+ got the second lowest preci-
sion. RD-UNet obtained the worst performance on all accuracy
metrics. Although CloudU-Net obtained close OA and pre-
cision to MFFCD-Net, F1-score and recall of it are much
lower than those of MFFCD-Net. This means that MFFCD-Net
achieved a better balance between commission and omission
errors. Therefore, the quantitative comparison results show
that MFFCD-Net could effectively improve the cloud detection
performance of the network at nighttime and accomplish the
day and night cloud detection tasks at the same time.

Fig. 7 shows a comparison of the results of different
methods for nighttime cloud detection. It can be seen that
there are lights in all four sets of test images, which affects
the discrimination of nighttime cloud detection. The cloud
boundary in Fig. 7(a) is more complicated. MFFCD-Net had
the best delineation on the cloud boundary, as well as the least
misclassification. RD-UNet missed many clouds in Fig. 7(a).
There are more stray point light sources in Fig. 7(b), U-Net,
Deeplab-v3, CDnetv2, and RD-UNet misdetected some of
the point light sources as clouds, while CloudU-Net and
IDeeplabv3+ resulted in leakage of cloud regions. There are
some light sources in Fig. 7(c), and since it is a rural area,
the lights are sparser, which requires the network to have
a higher ability to mine the cloud information. As such,
MFFCD-Net, compared with the comparative methods, could
realize the detection of all the clouds in the figure with
no light misdetection. However, IDeeplabv3+ and RD-UNet
classified some lights into cloud. There is a large light source
in Fig. 7(d); compared with baseline methods, MFFCD-Net
could realize a better cloud-boundary segmentation effect,
and at the same time, the false detection rate of the light
was low. All baseline methods misclassified some lights into
cloud. In Fig. 7, MFFCD-Net had some cloud misdetection
owing to the overlap between lights and clouds, smoothing
out the texture features of the clouds. Moreover, the presence
of lights with cloud edges did not appear inside the clouds,
and thus, it could not be detected by large-scale discrimination
to realize the detection. In summary, MFFCD-Net achieved a
better cloud detection effect in night remote sensing images
and effectively completed the discrimination and separation of
lights from clouds. Furthermore, even in the case of low image
contrast, it could still effectively mine cloud information and
perform cloud detection.
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Fig. 6. Comparison of daytime remote sensing cloud detection results by different methods.

TABLE III
COMPARISON OF PREDICTION ACCURACY OF DIFFERENT METHODS

AT NIGHTTIME. THE BEST VALUES ARE MARKED IN BOLD

C. Model Efficiency Analysis

In this study, a comparison was made for the network
efficiency, as shown in Table IV. The computing efficiency
test method was the time required to process 900 testing
patches of 256 × 256 pixels at inference. Compared with
CDnetv2 and CloudU-Net, MFFCD-Net was more efficient
while achieving high-precision cloud detection. RD-UNet got
the same inference time as that of MFFCD-Net because
MFFCD-Net is more complicated than U-Net, Deeplab-v3+,
and IDeeplabv3+. MFFCD-Net is less effective than them.
Although MFFCD-Net increased the complexity of the net-
work, the detection efficiency did not lag much behind, and it
had little impact on the practical cloud detection applications
with almost no impact.

D. Ablation Experiment

1) Ablation Experiment for Daytime Imagery: To study the
effect of the design modules of this article on MFFCD-Net,
we conducted ablation experiments as well as visualization
and analysis of the prediction results. Table V shows the
prediction accuracies at daytime after adding different mod-
ules, from which it can be seen that the design modules
in this article could effectively improve the cloud detection

OA and F1-score. The addition of DR-Up Block and MFEF
module significantly improved the recall, which suggests that
the sensing field and multiscale information provided by these
two modules can allow the network to capture more cloud
information and improve the network’s ability to detect clouds.
After adding AFF, we found that recall was reduced, while
precision was significantly improved, which indicates that
AFF can well fuse local spatial details and global semantic
information to achieve better cloud discrimination ability.

Fig. 8 shows the comparison of daytime detection results
after adding different modules at a time. There are more
complex cloud boundaries in Fig. 8(a), and there are cloud
shadows due to the varying cloud heights. The false detection
was improved by adding DR-Up, and the leakage detection of
cloud shadows was improved by adding MFEF. In contrast,
MFFCD-Net achieved the optimal detection of broken clouds
as well as the segmentation accuracy of the cloud boundaries
after adding AFF. The ablation experimental results prove that
the method proposed in this article can significantly improve
the detection effect of cloud layers of different scales and the
segmentation accuracy of cloud boundaries.

2) Ablation Experiment for Nighttime Imagery: Table VI
shows the prediction accuracies at night after adding different
modules, from which it can be seen that the modules designed
in this article could effectively improve the OA and F1-score
of cloud detection. DR-Up Block can improve OA, recall, and
F1-score. The MFEF module could improve the OA precision,
recall, and F1-score. The addition of the AFF showed that
although recall decreased, the precision improved significantly.
This means that AFF can reduce the oversegmentation of
Model3. Because AFF can fuse the encoder detail information
and multiscale features after the MFEF module processing to
filter out the lights, thus achieving better cloud detection at
night.
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Fig. 7. Comparison of nighttime remote sensing cloud detection results by different methods.

TABLE IV
COMPARISON OF DETECTION EFFICIENCY OF DIFFERENT METHODS. THE BEST VALUES ARE MARKED IN BOLD

TABLE V
COMPARISON OF PREDICTION ACCURACY OF DIFFERENT METHODS

AT DAYTIME. THE BEST VALUES ARE MARKED IN BOLD

Fig. 8. Comparison of results from daytime cloud detection ablation
experiments.

Fig. 9 shows the comparison of the nighttime cloud
detection results after adding different modules in sequence.
In Fig. 9(a), there are lights, and in the network without adding
the module, it can be seen that the lights were misdetected
as clouds. In the detection results obtained after the addition
of the DR-UP and MFEF modules designed in this article,
it can be seen that light misdetection was greatly improved.
In Fig. 9(b), there are lights and clouds at the same time.

TABLE VI
COMPARISON OF PREDICTION ACCURACY OF DIFFERENT METHODS

AT NIGHTTIME. THE BEST VALUES ARE MARKED IN BOLD

The right side of the lights overlaps with the clouds, and
the left side is only the lights. The detection results without
adding the module were part of the misdetection and omis-
sion. After adding the MFEF module, cloud omission was
greatly reduced, and at the same time, owing to the lack
of detail information, the cloud-boundary segmentation effect
was worse. Moreover, after adding the AFF module, we found
that MFFCD-Net had the best cloud detection results. The
ablation experimental results prove that the method proposed
in this article can significantly improve the network’s ability
to discriminate lights and can also accomplish the task of
luminous cloud detection.

3) Effectiveness of Feature Extraction: Fig. 10 shows the
feature maps of last convolution layer of different models. The
feature maps of Model1 are rough. Some thick and thin clouds
got very low feature values in daytime image. It can be seen
that with addition of the designed modules, the feature maps
become more detailed. This means that feature-extraction
ability is improved by introducing the designed modules. For
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Fig. 9. Comparison of results from nighttime cloud detection ablation
experiments.

Fig. 10. Comparison of feature-extraction abilities of different models. The
feature map represents the attention from clear pixels to cloudy pixels, with
values between 0 and 1.

nighttime image, the ability of distinguishing light from cloud
was improved by adding designed modules.

E. Comparison With ECM

The official cloud mask of VIIRS DNB images is ECM.
In order to compare with ECM, two daytime and nighttime
VIIRS DNB images and corresponding ECM products were
downloaded. The ECM products and results of different meth-
ods are shown in Fig. 11. It can be seen that ECM always
classified more background into cloud than deep learning-
based methods. CloudU-Net, IDeeplabv3+, and RD-UNet
misclassified some clouds into background in Fig. 11(a).
U-Net, Deeplab-v3, IDeeplabv3+, and RD-UNet misclassified
some lights into cloud in Fig. 11(c). U-Net, Deeplab-v3, and
CDNetv2 misclassified background into cloud in Fig. 11(d),
while MFFCD-Net can obtain more accurate cloud bound-
ary than ECM and baseline methods. The results show the
effectiveness of MFFCD-Net.

V. DISCUSSION

The number of manually labeled cloud masks is very
important for the performance of deep learning-based methods.
Labeling cloud masks manually for remote sensing image,
especially VIIRS DNB image, is very time-consuming because
there is only one band in the DNB image and the feature
difference between clouds and background in the DNB image
is smaller than that in the multispectral image. The accu-
racy of deep learning-based methods also depends on the
accuracy of manually labeled cloud masks. Because some
backgrounds, such as barren in Fig. 10(a) and (d), have very
similar brightness as clouds, it is more difficult for human to
distinguish cloud and background in such scene. Also, the time
for labeling such scene is much longer than other scenes such
as water and vegetation. Image-level labels, such as whether

Fig. 11. Comparison of daytime and nighttime remote sensing images of
different methods.

there is cloud in an image, are time-saving and easy to obtain,
weakly supervised methods will be a good choice to address
the above problems.

In Fig. 11, it can be seen that the cloud boundaries of ECM
are rough. Many backgrounds are misclassified as clouds in
ECM. This will reduce the available background data in the
application of DNB image. This may be because ECM is
produced by a Bayesian algorithm, which only uses the gray
feature of the image. The proposed MFFCD-Net is constructed
by CNN, which can extract gray, texture, and shape features
simultaneously. This can improve the ability of MFFCD-Net
for distinguishing cloud and background in difficult scene. The
more accurate cloud masks produced by MFFCD-Net will
increase the available data for the downstream applications.
Although MFFCD-Net is trained on VIIRS DNB images,
MFEF and AFF are designed for distinguishing cloud and
artificial lights in nighttime remote sensing images. It is
possible to apply MFFCD-Net on other nighttime satellites
such as LuoJia1-01 [52], SDGSAT-1 [53], and Lookup-1 [54]
with new training data.

Although MFFCD-Net can achieve high accuracy both on
daytime and nighttime DNB images, the performance on day-
time images is better than nighttime images. Some highlights
signal will transfer thin cloud, which makes the feature of
thin cloud unclear and is hard to detect thin cloud in this
situation [red circle regions in Fig. 7(b) and (d)]. Artificial light
is related to the distributions of road, building, and industry
facility. In the future, we can explore improving the accuracy
in nighttime images by combining the information of road,
building, and industry facility, thus reducing the influence of
artificial light.

VI. CONCLUSION

In this article, MFFCD-Net was proposed for cloud detec-
tion in daytime and nighttime remote sensing images. This is
the first time that the same cloud detection model is designed
to perform cloud detection both in daytime and nighttime
VIIRS DNB images. MFFCD-Net injected the designed MFEF
module, AFF module, and expanded residual upsampling mod-
ule into U-Net architecture, which improve the model’s ability
to detect clouds at different scales and achieve better cloud-
boundary segmentation. These enhancements also improve
the ability of MFFCD-Net to distinguish between the regular
texture of artificial light and the random texture of a cloud,
which significantly improves the cloud detection effect at
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night. Moreover, owing to the lack of manually labeled cloud
mask datasets of night remote sensing images, we produced
a cloud detection dataset of day and night remote sensing
images by manual labeling. The results on VIIRS DNB images
indicate that MFFCD-Net can realize the cloud detection task
for both daytime and nighttime remote sensing images and can
effectively improve the network’s ability to capture clouds at
different scales, the segmentation effect of cloud boundaries,
and the discrimination of light.
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