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A B S T R A C T   

Mapping of highly dynamic changes in land use and land cover (LULC) can be hindered by various cloudy 
conditions with optical satellite images. These conditions result in discontinuities in high-temporal-density LULC 
mapping. In this paper, we developed an integrated time series mapping method to enhance the LULC mapping 
accuracy and frequency in cloud-prone areas by incorporating spectral-indices-fused deep models and time series 
reconstruction techniques. The proposed method first reconstructed cloud-contaminated pixels through time 
series filtering, during which the cloud masks initialized by a deep model were refined and updated during the 
reconstruction process. Then, the reconstructed time series images were fed into a spectral-indices-fused deep 
model trained on samples collected worldwide for classification. Finally, post-classification processing, including 
spatio-temporal majority filtering and time series refinement considering land–water interactions, was conducted 
to enhance the LULC mapping accuracy and consistency. We applied the proposed method to the cloud- and rain- 
prone Pearl River Delta (i.e., Guangdong–Hong Kong–Macao Greater Bay Area, GBA) and used time series 
Sentinel-2 images as the experimental data. The proposed method enabled seamless LULC mapping at a temporal 
frequency of 2–5 days, and the production of 10 m resolution annual LULC products in the GBA. The assessment 
yielded a mean overall accuracy of 87.01% for annual mapping in the four consecutive years of 2019–2022 and 
outperformed existing mainstream LULC products, including ESA WorldCover (83.98%), Esri Land Cover 
(85.26%), and Google Dynamic World (85.06%). Our assessment also reveals significant variations in LULC 
mapping accuracies with different cloud masks, thus underscoring their critical role in time series LULC mapping. 
The proposed method has the potential to generate seamless and near real-time maps for other regions in the 
world by using deep models trained on datasets collected globally. This method can provide high-quality LULC 
data sets at different time intervals for various land and water dynamics in cloud- and rain-prone regions. 
Notwithstanding the difficulties of obtaining high-quality LULC maps in cloud-prone areas, this paper provides a 
novel approach for the mapping of LULC dynamics and the provision of reliable annual LULC products.   

1. Introduction 

Land use and land cover (LULC) datasets play a vital role as funda-
mental data in various applications, including land use planning and 
management, eco-environment conservation, and agriculture. LULC 
mapping has consistently been a popular research topic, and it continues 
to evolve alongside the advancements in data acquisition and processing 
capacities (Gómez et al., 2016; Ma et al., 2017; Talukdar et al., 2020; 
Vali et al., 2020). Over the past few decades, the spatial resolution of 
LULC mapping has been continuously improved from medium to high 

resolution at the meter- and even submeter-levels (Fan et al., 2020; 
Zanaga et al., 2021; Tong et al., 2023). Meanwhile, the temporal fre-
quency of LULC mapping is also promoted from annual mapping to near 
real-time mapping (Gong et al., 2019; Zhang et al., 2021; Brown et al., 
2022). Recent machine learning techniques, especially deep learning, 
have significantly revolutionized LULC mapping, and are widely used 
for producing new regional and global LULC products (Zanaga et al., 
2021; Brown et al., 2022; Li et al., 2023). The advancements of LULC 
mapping in the above-mentioned aspects have marked a significant 
milestone in achieving accurate and continuous LULC mapping with 
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dense image time series. 
Image classification serves as the foundation of LULC mapping and 

categorizes remotely sensed images on the basis of various spatial units 
from pixels, objects, and geo-parcels to the scenes (Blaschke, 2010; Ma 
et al., 2017; Yang et al., 2017; Zhang et al., 2018). Over the previous 
decades, LULC classification methods that utilize spectral and spatial 
information from different sources of satellite remote sensing data, 
including optical and radar images, have been intensively developed 
(Foody, 1995; Yan et al., 2006; Myint et al., 2011; Duro et al., 2012; Qi 
et al., 2012). Traditional classification methods suffer from identifying 
complex land patterns, especially in urban areas, due to the limited 
number of low-level features in the spectral and spatial domains 
involved. Deep learning, emerging as a new focal point in machine 
learning, has brought about significant breakthroughs that have sparked 
a revolution in the remote sensing field (Zhang et al., 2016; Zhu et al., 
2017; Yuan et al., 2020). Likewise, deep learning has facilitated LULC 
mapping and boosted its accuracy to state-of-the-art levels. The signif-
icant advantages of deep learning for image classification over tradi-
tional rule-based and machine learning methods are their strong feature 
representation ability, which allows them to learn from data and 
adaptively extract a huge number of discriminating features for classi-
fication (Zeiler and Fergus, 2014; Kussul et al., 2017; Li et al., 2018). The 
superiority and potential of deep learning that leverages diverse multi- 
scale and multi-level features extracted from images become ever 
more explicit and significant with the increase in the spatial resolution 
of satellite images for LULC mapping. Meanwhile, the integration of 
multi-source or multi-modal data has improved the LULC mapping 
performance. For example, the combined use of optical, SAR, and 
topography data can achieve higher LULC mapping accuracy than using 
mono-modal data alone (Hong et al., 2020; Li et al., 2022b). Herein, one 
of the advantages of deep learning is that it makes the fusion of het-
erogeneous multi-source and multi-modal data for LULC mapping easier 
than traditional classification methods. 

Recently, deep learning-based LULC classification methods have 
been mostly used for pixel-to-pixel LULC classification (Li et al., 2016; 
Kussul et al., 2017; Scott et al., 2017; Ienco et al., 2019; Dou et al., 
2021), which typically involve training end-to-end deep models that 
classify each pixel or segmented object of the input image into a specific 
class. Specifically, a number of spatial aggregation and boundary 
refinement strategies, including conditional random field (Fu et al., 
2017), object-based image analysis (Zhang et al., 2018; Liu et al., 2019), 
skeleton decomposition (Huang et al., 2018), and hierarchical segmen-
tation (Tong et al., 2020), are integrated with deep learning models to 
refine the classification results and preserve the completeness of the 
ground objects in the classification results. Furthermore, the geotagged 
photographs can be used as auxiliary data to facilitate the LULC classi-
fication and validation (Tracewski et al., 2017; Xu et al., 2017; Xing 
et al., 2018). In particular, dual-branch convolutional neural network 
(CNN) architectures have been designed in several studies to better deal 
with panchromatic and multi-spectral bands separately (Gaetano et al., 
2018; Huang et al., 2018). More recently, the benefits of combining two 
different networks, namely, CNN and recurrent neural network (Inter-
donato et al., 2019; Qiu et al., 2019a) and CNN and Transformer (Wang 
et al., 2022; Song et al., 2023), have also been exploited to enhance the 
feature representation and improve the model performance for LULC 
classification. Recent public LULC products, including Esri Land Cover 
(Karra et al., 2021), Google Dynamic World (Brown et al., 2022), and 
SinoLC-1 (Li et al., 2023), have been developed using deep learning 
approaches. These advancements highlight the growing popularity of 
deep learning methods in practical applications, particularly demon-
strating their effectiveness in challenging classification scenarios, such 
as for cropland and grass/shrub classes (Wang and Mountrakis, 2023). 

Despite the remarkable progress made in recent years, two major 
issues in the field of LULC mapping persist. On one hand, the cloud 
coverage in optical image time series reduces the availability of data for 
time series LULC mapping. Meanwhile, the importance of accurate cloud 

masks cannot be overstated for precise high-temporal-density near real- 
time LULC mapping, especially in cloud-prone areas. However, the 
cloud masks that are commonly used are often not highly accurate, as 
evidenced by multiple recent studies (Baetens et al., 2019; Sanchez 
et al., 2020; Tarrio et al., 2020), leaving space for further improvements. 
Specifically, for Sentinel-2 imagery, the Sentinel-2 Level 1-C cloud mask 
product has been found to generally underestimate cloud presence, 
which cannot be ignored (Coluzzi et al., 2018). Other existing cloud 
detection methods, such as Sen2Cor (Richter et al., 2012), MAJA 
(Hagolle et al., 2017), and Fmask (Qiu et al., 2019a, 2019b), exhibit 
varying limitations in accurately distinguishing clouds from bright 
ground surfaces and in effectively identifying thin cirrus clouds and 
cloud shadows, as summarized in the study by (Tarrio et al., 2020). 
These limitations highlight the necessity for more sophisticated 
methods, such as the deep learning model by Li et al. (2021), which 
offers improved accuracy through the use of multiscale features but is 
limited by the requirement for extensive training data. Despite the 
progress made, the accuracy of cloud masks remains suboptimal, 
underscoring the necessity for ongoing efforts to refine cloud detection 
techniques to enhance LULC mapping capabilities. Additionally, 
revealing the quantitative effects of clouds and different cloud masks on 
the accuracy of LULC mapping is another aspect that warrants further 
exploration (Tarrio et al., 2020; Ling et al., 2021). On the other hand, the 
identification of dynamically changing land patterns, especially over 
varying water areas, such as paddy fields, is challenging but important 
for the composition of accurate annual LULC maps (Waleed et al., 2022). 
Meanwhile, the annual LULC mapping, which leverages all available 
image time series within a year, is expected to further promote the 
mapping accuracy. 

To improve high-temporal-density LULC mapping in cloudy and 
rainy areas, we proposed an integrated time series LULC mapping 
method to enhance the LULC mapping under dense cloud coverage and 
varying water conditions. This method aims to generate and composite 
seamless near real-time, monthly, seasonal, and annual LULC maps with 
high accuracy. Specifically, spectral-indices-fused deep models that fuse 
task-specific spectral indices from images are constructed for cloud 
masking and LULC classification, respectively. The refined cloud masks 
through time series refinement are expected to reduce the negative in-
fluences of clouds on LULC mapping. Meanwhile, the reconstruction of 
time series cloudy images will benefit LULC mapping in terms of accu-
racy. In particular, the consideration of temporal change patterns in 
post-classification processing benefits the identification of classes, such 
as crops, which may frequently occur in water–land interactions. The 
objectives of this study are as follows: 1) develop an integrated method 
for high-quality time series LULC mapping in rainy and cloudy areas; 2) 
reveal the effects of clouds on LULC mapping and the benefits of time 
series reconstruction and LULC mapping with dense image time series; 
and 3) produce a series of LULC products over the study area that 
outperform the other existing products. The proposed method is ex-
pected to be applied in other regions in the world to generate highly 
reliable LULC products, especially in cloud-prone areas. 

2. Study area and data 

The Guangdong–Hong Kong–Macao Greater Bay Area (GBA there-
after) (Fig. 1), one of the most developed regions in China, encompasses 
a total of 11 major cities and spans in the Pearl River Delta region, which 
has experienced rapid land use and land cover changes in the recent 
decades (Weng, 2002; Zhang and Weng, 2016; Zhang et al., 2017). The 
rainy and cloudy weather conditions in the GBA present a challenge for 
high-temporal-density LULC mapping, especially during annual rainy 
seasons when the region experiences dense cloud coverage. The exis-
tence of the Pearl River and coastal environment results in frequent land 
and water interactions in the GBA, leading to highly dynamic changes in 
LULC types in the region. Thus, GBA is selected as the study area to 
examine the effectiveness of the proposed method for LULC mapping in 
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cloud-prone areas. 
The Sentinel-2 images from the Sentinel-2 A/B constellation oper-

ated by the European Space Agency are selected as the study data. 
Specifically, the harmonized Sentinel-2 Level-2 A (i.e., surface reflec-
tance) image time series in the GBA is exported through the Google 
Earth Engine (GEE) platform (Gorelick et al., 2017). In addition, the 
LULC mapping experiments incorporated an image dataset spanning 4 
years from December 1, 2018, to January 31, 2023. The spatial reso-
lution of all exported spectral bands in Sentinel-2 images is unified to 10 
m by the default nearest neighbor resampling in GEE, and the temporal 
resolution is 2–5 days, varying from different regions. Majority of the 
areas in the GBA are revisited by Sentinel-2A/B satellites every 5 days, 
resulting in a total of 299 typical coverages during the study period. The 
Sentinel-2 time series over GBA among the 4 years are densely covered 
by clouds with an estimated mean cloud percentage as high as 51.61%. 
The monthly mean cloud percentages for each year are provided in 

Fig. 1, which depicts that high-quality and high-temporal-density LULC 
mapping in GBA is challenging due to the cloud coverage. To efficiently 
proceed with dense time series image data, as shown in Fig. 1, the 
Sentinel-2 time series in the GBA is divided into 40 × 30 image tiles for 
tile-by-tile data acquisition and processing. Only the 695 tiles that cover 
the GBA are involved for experiments, each tile with a size of approxi-
mately 1360 × 1278. Each of the two neighboring image tiles overlaps 
by 0.01◦ in all four directions to alleviate the artifacts at the edges of 
results produced by deep models and avoid inconsistency at image edges 
when mosaicing the image tiles to an entire large image for GBA. 

We collected sample points based on very high-resolution satellite 
images in Google Earth through manual interpretation to comprehen-
sively evaluate the time series LULC products. In Fig. 1, the 1263 sample 
sites over GBA are selected by stratified random sampling. The number 
and percentages of sample sites for each majority class are as follows: 
water (116, 9.18%), trees (591, 46.79%), grass (41, 3.25%), flooded 

Fig. 1. Study area Pearl River Delta and monthly cloud percentage in Sentinel-2 imagery utilized for the study. The upper image shows the location of the study area 
and the distribution of validation sample sites. The lower image represents the average monthly percentages of cloud coverage in Sentinel-2 imagery in the study area 
during 2019–2022. 
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vegetation (60, 4.75%), crops (117, 9.26%), scrub (47, 3.27%), built 
area (245, 19.40%), and bare ground (46, 3.64%). The LULC labels of 
the sample points are double-checked by two individual experts to 
guarantee the labeling quality. Meanwhile, we positioned the selected 
sample points of each site at the center of the homogenous area to 
alleviate the labeling errors caused by the spatial misalignment and 
spatial resolution differences between Sentinel-2 and Google Earth im-
ages. The selected sample points cover multiple dates between 
December 2018 and January 2023, with consideration for the LULC- 
changed areas. Accordingly, multiple labels are associated with 
different dates for sample points where LULC changes occurred during 
the above-mentioned period. Meanwhile, only a single label is associ-
ated without a specific date for sample points that belong to the same 
LULC category over the entire study period, if all manually interpreted 
labels are in the same category based on all available historical obser-
vations on Google Earth during the study period. Among the 1263 
sample sites, 1188 are LULC-unchanged sites, and 75 sites have under-
gone LULC changes, from which 1188 and 186 LULC labels are collected, 

respectively. Such a collection of sample points, including the LULC- 
changed and unchanged areas over time, will guarantee a more 
comprehensive evaluation of time series LULC products. 

3. Methodology 

We proposed an integrated LULC mapping method, which comprises 
four main steps (Fig. 2). The proposed method first initializes cloud and 
cloud shadow masks for time series Sentinel-2 images by the spectral- 
indices-fused deep model based on CNN. The cloud- or cloud shadow- 
contaminated pixels in the Sentinel-2 time series are then recon-
structed through time series filtering, during which the initial cloud 
masks are refined to improve the reconstruction effects. Thereafter, the 
reconstructed time series images are fed into another deep model trained 
on samples collected worldwide for LULC classification. Finally, post- 
classification processing is conducted to enhance the LULC mapping 
accuracy and consistency. The accuracy of the produced LULC products 
is quantitatively evaluated and compared with existing mainstream 

Fig. 2. The flowchart of the proposed time series LULC mapping method.  
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LULC products in the GBA. In particular, the effects of the cloud 
coverage on LULC mapping are evaluated. 

3.1. Initializing cloud and cloud shadow masks 

The cloud masks provided in the quality assessment bands of 
Sentinel-2 images are rough and do not label the cloud shadow areas, 
which will lead to significant biases for the following image recon-
struction and classification steps. Accordingly, we used a dual-branch 
deep model for cloud and cloud shadow detection in Sentinel-2 Level- 
2 A images to produce high-quality masks to support the precise 
reconstruction of missing areas in time series images. 

With regard to the cloud and cloud shadow detection task, we used a 
large Sentinel-2 cloud and cloud shadow detection dataset, i.e., Cloud-
SEN12 (Aybar et al., 2022), for the model training, in which the samples 
collected worldwide and with varying cloud coverage conditions will 
guarantee the state-of-the-art model performance and model generation 
ability across different image scenarios. In the CloudSEN12 datasets, 
10,000 Sentinel-2 image patches on 2000 regions of interest (ROIs) 
worldwide are labeled with high confidence. There are five Sentinel-2 
image patches in each ROI, each with a size of 509 × 509. We 
included four of the five samples in each ROI for model training. The 
remaining one sample, which is randomly selected from the five samples 
in each ROI, is used for the validation of the model performance. The 
Sentinel-2 images in the CloudSEN12 dataset are collected at both Level- 
1C and Level-2 A, and the label covers four classes, including thick 
cloud, thin cloud, cloud shadow, and clear sky. In this paper, the model 
trained with Sentinel-2 Level-2 A images and corresponding labels can 
distinguish cloud and cloud shadow from clear sky in the Sentinel-2 
surface reflectance data for experiments. 

In Fig. 3, the designed dual-branch Spectral-Indices-Fused Deep 
Model (SIFDM) is a U-Net-like (Ronneberger et al., 2015) enco-
der–decoder architecture and consists of dual-branch encoders, which 
are used to extract multi-level features from the original images and 
their derived spectral indices that contain the prior knowledge, and a 
decoder, which is designed to step-wisely fuse the multi-level features 
and output the desired cloud and cloud masks. The underlying moti-
vation for this design is to leverage the knowledge inherent in the 
original images by explicitly providing this information, thereby guiding 
the training process and amplifying the model’s ability to discern the 
intricate patterns of clouds and their shadows. The derived spectral 

indices from the original images, including the haze optimized trans-
form (HOT) index (Zhang et al., 2002; Zhu and Woodcock, 2012), visible 
band ratio (VBR) (Li et al., 2017), cloud displacement index (CDI) 
(Frantz et al., 2018), and cloud shadow index (Zhai et al., 2018), are 
discriminative features for cloud and cloud shadow masking and have 
been widely used in previous studies. 

Specifically, five levels of features are extracted and fused in the 
model. The detailed network structure of the designed SIFDM model is 
provided in Appendix Table 1. In the encoder module, each level of 
features in the encoder is generated by double convolutions with a 3 × 3 
convolution kernel size. A batch normalization layer and a rectified 
linear unit (ReLU) activation function are followed after each convolu-
tion layer. Meanwhile, a pooling layer is added after the first four double 
convolution blocks to reduce the spatial dimensions of the feature 
through a maximum operation over a 2 × 2 window. When the spatial 
dimensions of the feature maps are reduced by half from the second to 
the last block in the encoder, the numbers of feature maps at the five 
levels are set to {64, 128, 256, 512, 512} to retain more information as 
needed. In the decoder module, features at different levels are step- 
wisely fused and recovered to the same height and width as the input 
image. The same-level features from each branch of the encoder are 
concatenated and upsampled to twice the height and width of the input 
features through bilinear interpolation. Thereafter, the unsampled fea-
tures are fed into the same double-convolution block as in the encoder. 
The number of output feature maps will be reduced to 1/4 or 1/2 
adaptively after the double convolutions. The output feature maps are 
concatenated with the features from each branch of the encoder at the 
next level and then fed into a double-convolution block after being 
upsampled. The above-mentioned process is repeated until the last 
output, which is generated by a single convolution layer with a size of 1 
× 1 kernel, to retain more spatial details in the final output maps. The 
numbers of output feature maps of each double-convolution block, 
excepting the last convolution layer in the decoder, are set to {256, 128, 
64, 64}. Meanwhile, the number of output features for the last convo-
lution layer is determined by the specific task at hand and is based on the 
number of classes that are labeled in the training datasets. Here, a cross- 
entropy loss function is employed to supervise the model training. 
Overall, such a design leverages the derived spectral indices that contain 
the prior knowledge, enabling the model to accurately discern complex 
patterns of clouds and their shadows, thereby facilitating precise image 
reconstruction in the subsequent steps. 

Fig. 3. The network architecture of the dual-branch spectral-indices-fused deep model.  
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During the model training, a stochastic gradient descent (SGD) 
optimizer and a poly learning rate decay policy were chosen. In this 
setup, the learning rate follows a polynomial decay from an initial value 
of 0.1 to zero when reaching the maximum iteration limit. Finally, the 
model was adequately trained for 100,000 iterations with a batch size of 
8 on the 8000 training samples. In the application stage of the pre- 
trained cloud and cloud shadow masking model, we initialize a binary 
mask Minitial based on the model output, in which the invalid cloud/ 
shadow-contaminated pixels are denoted as one, while the valid clear- 
sky pixels are labeled as zero. 

3.2. Time series reconstruction of the missing pixels 

To reconstruct the missing pixels contaminated by clouds and cloud 
shadows, we utilized a Whittaker filter (Whittaker, 1922; Eilers, 2003) 
to conduct time series filtering for each pixel band by band. Whittaker 
filtering has been widely applied for time series signal smoothing in 
various fields due to its superior smoothing capability and high 
computation efficiency. Given the reflectance of pixel time series y with 
a length of n (i.e., the total number of pixels), the goal of Whittaker 
filtering is to obtain a smoothed time series z with high fidelity. Thus, the 
objective function in Eq. (1) can be constructed to find the time series z 
that minimized Q. 

Q = |y − z|22 + λ|Dz|22 (1)  

where the first fidelity term |y − z|22 measures the usual sum of squares of 
differences between y and z, the second smoothing term |Dz|22 can be 
expressed with the sum of squares of second-order differences, and λ is 
the weight parameter used to balance the fidelity term and smoothing 
term. Thus, the above-mentioned object function can also be written as 
Eq. (2). 

Q =
1
2
∑n

i=1
(yi − zi )

2
+ λ

∑n− 1

i=2
(zi− 1 − 2zi + zi+1 )

2 (2) 

Before inputting the reflectance of the pixel time series y over the 
entire study period for filtering, the missing values in y are pre-filled 
through linear interpolation. This process estimates the missing values 
by interpolating along the line segment between two adjacent known 
data points. Here, only the spectral bands used for the subsequent LULC 
classification are engaged in reconstruction. Although the generated 
masks by the deep model are highly accurate, they are not ideal, and 
omission errors, such as the thin clouds in images, may still occur, which 
will lead to biases in the time series reconstruction step. To this end, time 
series filtering is utilized to leverage temporal information to refine 
masks. Specifically, with regard to the reflectance of each pixel time 
series, the invalid pixels in the time series labeled in the initial mask 
Minitial are first filled through the nearest neighbor interpolation. 
Thereafter, triple upper-enveloped Whittaker filtering is conducted on 
the interpolated time series, as shown in Fig. 4, in which the values of 
the pixels in the time series increased after filtering will be set to the 
original value before filtering in the first two rounds of filtering. This 
upper-enveloped strategy specifically targets the omission of clouds, 
because clouds both occupy larger portions of cloud-covered images and 
generally lead to more significant changes in pixel reflectance than 
cloud shadows. The purpose of such triple filtering is to obtain the 
reference clear-sky reflectance curve of the target pixel. The reflectance 
curve is relatively smooth, and noises are largely filtered out. Finally, if 
the absolute value difference for each pixel in the time series before and 
after triple filtering is greater than a threshold that is empirically set to 
0.04, and the pixel value before filtering is larger than the 80% quantile 
value or smaller than the 20% quantile values of all valid pixels in the 
time series indicated in Minitial, such a pixel in the time series will be 
labeled as the invalid cloud or cloud shadow pixel and is merged into the 
initial mask Minitial to obtain the refined mask Mrefined. 

The refined masks Mrefined will be used as a reference to guide the 
reconstruction of the missing pixels in the time series. Specifically, the 
invalid values in the pixel time series are also first filled by nearest 
neighbor interpolation. Afterward, Whittaker filtering is applied to 
smoothen the time series. Although the refined masks are not completely 
accurate, the omission error has been significantly reduced (Fig. 4). Such 

Fig. 4. Time series refinement of the cloud and cloud shadow masks and reconstruction of the missing pixels.  
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a mask refinement will ensure more satisfactory reconstruction results, 
although it may sacrifice a few valid pixels that are mistakenly labeled as 
cloud or cloud shadow. This phenomenon occurs because omission er-
rors in the cloud and cloud shadow masks are more serious than com-
mission errors for time series fitting (Zhu and Woodcock, 2012, 2014). 
The weight parameter λ is set to four for enhanced smoothing effects in 
identifying omitted cloud or shadow pixels during mask refinement, and 
to two to guarantee high fidelity of pixel reflectance before and after 
time series filtering. The reconstructed cloud-free image time series will 
be used for the subsequent LULC classification. 

3.3. LULC classification with the reconstructed image time series 

This paper adapted the same network architecture (Fig. 2) for LULC 
classification, which has been used for cloud masking. This initiative is 
carried out because the LULC classification and cloud masking are se-
mantic segmentation tasks. The differences between the models for the 
above-mentioned two tasks are the inputs and outputs. The inputs for 
the LULC classification model at the dual-branch encoder are spectral 
bands of reconstructed cloud-free Sentinel-2 image and derived spectral 
indices. Specifically, the input spectral bands include B2, B3, B4, B5, B6, 
B7, B8, B8A, B11, and B12 (i.e., all spectral bands except aerosol band 
B1 and water vapor band B9). The input-derived spectral indices for 
classification, which refer to the Sentinel-2 Level-2 A product algorithm 
(Richter et al., 2012), include normalized difference vegetation index 
(NDVI), normalized difference water index (NDWI), normalized differ-
ence built index (NDBI), normalized difference snow index (NDSI), and 
ratios of band 2/band 4, band 8/band 3, band 2/band 11, and band 8/ 
band 11. The derived spectral indices are utilized to diversify and enrich 
the input features and enhance the model performance. The output of 
the LULC classification model is the multi-class classification map. The 
loss function used to supervise the model training and measure the 
difference between the model outputs and the ground truths is the linear 
combination of focal loss (Lin et al., 2020) and dice loss (Milletari et al., 
2016), as introduced in previous studies (Cheng et al., 2021; Kirillov 
et al., 2023). Although the focal loss is helpful in boosting the model 
performance on the hard-classified samples, the dice loss benefits the 
model performance on the classes with few percentages of samples. Such 
a loss combination will contribute to the construction of well-balanced 
losses for model training supervision and better model performance. 

The Dynamic World training dataset for global LULC categorization 
(Tait et al., 2021), which is constructed based on over 5 billion pixels of 
manually labeled Sentinel-2 images collected at global sites, is used for 
LULC classification model training and validation. The dataset was 
created under the National Geographic Society - Google - World Resources 
Institute Dynamic World project. The 10 m resolution image patches of 
the datasets with a size of 510 × 510 pixels are densely labeled using a 
10-category classification schema. Majority of these image patches were 
acquired in 2019, with the exception of approximately 10% of the 
patches obtained in 2017, primarily from cloud-prone areas worldwide. 
Note that cloud is marked in labels for the image patches contaminated 
by clouds. With regard to the proposed classification model in this study, 
a total of 24,528 Sentinel-2 image patches and their corresponding 
pixel-level labels from both expert and non-expert labeling sources were 
involved for model training. The total number of valid training pixels is 
approximately 5.73 billion, with the following pixel percentages for 
each class: water (8.63%), trees (38.99%), grass (2.42%), flooded 
vegetation (2.43%), crops (13.12%), scrub (34.05%), built area 
(4.74%), bare ground (3.43%), and snow/ice (3.01%). Additionally, an 
extra 409 samples with the same image size are used for model valida-
tion. The total number of valid validation sample pixels is approximately 
29.46 million and the pixel number percentages for each class are as 
follows: water (22.34%), trees (29.40%), grass (1.30%), flooded vege-
tation (1.39%), crops (25.37%), scrub (5.47%), built area (9.18%), bare 
ground (3.49%), and snow/ice (2.06%). The highway data in Open-
StreetMap (OSM) datasets (OSM, 2017) are rasterized with 1 pixel 

dilatation and merged into the class of built area in training dataset to 
enhance the ability in identifying roads in built areas. 

During the LULC classification model training stage, the same 
strategy for training the deep model for cloud and cloud shadow 
detection, as outlined in Section 3.1, is followed with only two differ-
ences: a reduced batch size of 4 and an increased maximum number of 
iterations to 200,000. Once the classification model is trained, the large- 
size image can be processed with the pre-trained model patch by patch. 

3.4. Post-classification processing 

The post-classification processing is conducted to refine the classi-
fication results and improve the consistency of the time-series LULC 
maps. Efforts in two aspects are made to achieve this goal. 

3.4.1. Improving the LULC mapping consistency through spatio-temporal 
majority filtering 

A 3D majority filter with a kernel size of 3 × 3 × 3 is employed to 
filter out the spatio-temporal noises from the time-series LULC maps. 
The classes that most frequently occur within the 3 × 3 × 3 sliding 
window will be assigned as the class of the center pixel within the 
window. Such an operation is helpful in reducing the classification er-
rors brought by random noise in the original images and inaccurate 
predictions by deep models. The time series consistency of LULC maps 
will be improved by using the spatio-temporal majority filtering. 

3.4.2. LULC map composition considering time series change patterns 
Temporal composition is conducted to generate monthly, seasonal, 

and annual LULC maps, in which the time series LULC maps at different 
lengths of time periods (i.e., one month, one season, and one year) are 
composited. The class value for each pixel most frequently occurring in 
the time series of different lengths will be considered the final LULC 
category in the monthly, seasonal, or annual LULC map. In particular, 
the temporal change patterns are considered during the LULC map 
compositions, especially in areas where land and water interactions 
frequently occur. Specifically, the LULC category for a pixel LULC time 
series changes between crops and water more than two times within one 
year. The final category of such pixel will be assigned as crops in the 
annually composited map. Such an LULC map refinement rule is also 
applicable for composting seasonal maps. Based on the near real-time 
time series LULC maps and the above-mentioned post-processing, the 
monthly, seasonal, and annual LULC maps can be generated. Thus, the 
LULC dynamics can be monitored at different frequencies. 

4. Results and analysis 

The 4-year Sentinel-2 time series covering GBA was used as the 
experiment data, in which a total of 695 tiles of image time series exist. 
All image time series tiles are processed tile by tile according to the 
processes shown in Fig. 1 by using the pretrained cloud masking model 
and LULC classification model. The monthly, seasonal, and annual LULC 
maps for the entire GBA can be finally produced by composting and 
mosaicking time-series LULC map tiles. In this section, we will first 
evaluate the performance of the deep models, conduct an accuracy 
assessment of our produced LULC products, and compare them with the 
mainstream public LULC products. Finally, the effects of the cloud 
coverage on LULC mapping will be investigated. The five metrics, 
including overall accuracy (OA), producer’s accuracy (PA), user’s ac-
curacy (UA), mean intersect over union (mIoU), and F-score, are 
involved in the accuracy assessment. 

4.1. Accuracy validation of deep models for cloud masking and LULC 
classification 

4.1.1. Accuracy validation of the cloud and cloud shadow masking model 
Based on the 2000 randomly selected global validation samples from 
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the 2000 ROIs worldwide in the CloudSEN12 dataset (Aybar et al., 
2022), the accuracy of the trained cloud and cloud shadow masking 
model can be quantitatively assessed and compared with other methods. 
The compared methods include, QA60 (i.e., quality assessment bands 
associated with Sentinel-2 images) (Chambrelan, 2012), Sen2Cor 
(Richter et al., 2012), s2cloudless (Zupanc, 2017), Fmask (Qiu et al., 
2019a, 2019b), CD-FCNN (López-Puigdollers et al., 2021), and Kappa-
Mask (Domnich et al., 2021). 

Note that the initial cloud and cloud masks, obtained using the 
SIFDM model and without refinement, are utilized for accuracy evalu-
ation. Among the compared deep learning models, CD-FCNN and Kap-
paMask only use Sentinel-2 image bands as input, while SIFDM with a 
dual-branch encoder incorporates both image bands and their derived 
spectral indices as input. Additionally, all cloud and cloud shadow 
masks generated by the compared methods are already included in the 
CloudSEN12 dataset (Aybar et al., 2022) and thus directly collected for 
comparisons, without involving model training or fine-tuning. We used 
thresholds of 40 and 500 to binarize the grayscale cloud masks gener-
ated by s2cloudless and CD-FCNN, respectively. The optimal segmen-
tation thresholds are selected by a rough parameter sensitivity analysis. 
The threshold that led to the highest overall accuracy will be used as the 
segmentation threshold to generate binary cloud masks for accuracy 
assessment. All subclasses of cloud in masks, including thick and thin 
clouds in the ground truth masks, opaque cloud and cirrus cloud in the 
QA60 masks, medium- and high-probability cloud, and thin cirrus in 
Sen2Cor, are merged into a single category of cloud. Meanwhile, the 
masks generated from QA60 or by s2cloudless and CD-FCNN only 
contain cloud information but without cloud shadow. To ensure fair 
comparisons of masks generated by different methods, we conduct ac-
curacy assessments for cloud and cloud shadow separately to guarantee 
that the accuracies of cloud or cloud shadow in different masks are 
comparable. Specifically, the cloud and all other classes (including cloud 
shadow) will be treated as two classes for the accuracy assessment of 
cloud. The same approach is applied for the cloud shadow accuracy 
assessment. 

Table 1 shows the details of the accuracy assessment results for the 
different methods. The proposed DKDFM model achieved the best per-
formance in the cloud and cloud shadow detection on the 2000 test 
samples, followed by Fmask and KappaMask, which outperformed the 
other methods. The s2cloudless, CD-FCNN, KappaMask, and our SIFDM 
model are all machine-learning-based methods, and the last three 
methods are based on CNNs. Among all the compared methods, Fmask is 
the only non-machine-learning method, the cloud detection results of 
which are comparable with the machine learning methods that generally 
exhibited better performance in distinguishing clouds from bright non- 
cloud objects (Li et al., 2022a). 

4.1.2. Accuracy validation of the LULC classification model 
The additional 409 validation samples in the Dynamic World 

training dataset (Tait et al., 2021) with the same image size as training 

samples and collected from different biomes worldwide are used for 
model performance evaluation. Each image in the validation samples is 
labeled by three expert annotators and one non-expert annotator. 
Thereafter, the ground truths for the accuracy assessments can be 
composited based on the four individual annotations using the voting 
scheme. In this paper, ground truths composed using the voting scheme 
“Three Expert Strict”, as detailed in the study by Brown et al. (2022), are 
used for model validation. This scheme stipulates that valid labels must 
be those where all three expert annotators labeled and all agreed. We 
validate our LULC classification model (i.e., SIFDM) and compare it with 
the model (named DW-Net hereafter) used to generate Dynamic World 
LULC products by using the same validation samples. The accuracy 
assessment results are listed in Table 2. The results show that the SIFDM 
model outperforms DW-Net in the overall LULC classification accuracy 
and achieves a higher overall accuracy of 93.39% than the 88.40% of 
DW-Net. The validation results also suggested that the classification 
accuracy of SIFDM is higher than that of DW-Net in terms of F-score for 
most classes, except for bare ground, indicating the potential of SIFDM 
for application in LULC mapping in GBA. 

4.2. Accuracy assessment and comparison of the LULC products in GBA 

The time-series LULC products in the GBA can be generated through 
the process chain introduced in the methodology section by using the 
pre-trained deep models. The LULC categories involved in GBA include 
water, trees, grass, flooded vegetation, crops, scrub, built area, and bare 
ground. We named the generated LULC products in GBA as GBACover, 
which include a series of dense time series LULC maps at multiple 
temporal densities (i.e., near real-time, monthly, seasonal, and annual 
scales). The accuracy of the generated GBACover products can be 
quantitatively evaluated and compared with other global LULC products 
over the GBA, including ESA WorldCover (Zanaga et al., 2021), Esri 
Land Cover (Karra et al., 2021), and Google Dynamic World (Brown 
et al., 2022) by using the manually interpreted LULC samples in GBA. All 
three existing LULC products were produced based on machine learning 
methods, making them highly accurate and comparable with LULC maps 
generated with the proposed method. The accuracies of the generated 
LULC maps are examined using the entire manual validation samples. 
The sample pixels that undergo changes over the study period are an-
notated with multiple labels at different dates. Meanwhile, the pixels 
without LULC changes are used to evaluate the accuracy of the entire 
time series LULC classification results. Specifically, the accuracy of the 
composited annual LULC maps can be assessed with validation samples 
within a specific year and compared with the existing products in 
quantitative assessment and visual inspection manners. 

Two similar but different categories in the four different LULC 
products are involved in the comparison (i.e., flooded vegetation and 
wetlands). Detailed comparisons of class definitions among the LULC 
products are provided in Appendix Table 2. Esri Land Cover, Google 
Dynamic World, GBACover, and annotated samples contain flooded 

Table 1 
Accuracy comparison of the cloud and cloud masks generated by SIFDM and benchmarked methods.  

Methods Cloud Cloud shadow 

OA PA UA mIoU OA PA UA mIoU 

QA60 79.12% 
(+1.15%) 

60.44% 
(− 12.75%) 

69.81% 
(+13.18%) 

0.479 
(− 0.045) 

\ \ \ \ 

Sen2Cor 84.55% (0.88%) 69.89% (− 7.11%) 79.04% (+8.85%) 0.590 (− 0.012) 90.48% 18.21% 84.70% 0.176 
s2cloudless 89.02% 79.33% 85.10% 0.697 \ \ \ \ 

Fmask 88.82% 89.15% 78.55% 0.717 90.12% 46.61% 57.21% 0.346 
CD-FCNN 88.57% 80.56% 82.96% 0.691 \ \ \ \ 

KappaMask 87.13% (− 1.03%) 92.76% (− 19.26%) 75.07% (+8.41%) 0.709 (− 0.071) 91.50% 47.79% 66.78% 0.386 
SIFDM (this paper) 94.80% (+0.38%) 94.30% (− 3.89%) 89.85% (+4.36%) 0.852 (+0.004) 94.71% 62.55% 86.43% 0.570 

Note: The accuracy assessments were conducted for cloud and cloud shadow separately due to the unavailability of cloud shadow information in masks derived from 
QA60, s2cloudless, and CD-FCNN. The values in brackets represent the changes in accuracy attributed to the exclusion of thin clouds in QA60, Sen2Cor, KappaMask, 
and SIFDM. 
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vegetation. However, the ESA WorldCover provides wetland informa-
tion. We used the flooded vegetation labels to evaluate the accuracy of 
wetlands for the ESA WorldCover product over GBA for convenience of 
accuracy evaluation and result comparisons; thus, the accuracy of wet-
lands is only for the relative comparison. Considering the differences 
among the four compared products, the coloring scheme for mapping is 
unified to the same scheme as ESA WorldCover products. The naming of 
LULC types is also unified as defined in the Dynamic World training 
dataset. Table 3 shows the accuracy of our annual GBACover products 
and the other compared LULC products over the GBA from 2019 to 2022. 
The validation results suggested that GBACover has the highest overall 
accuracy for the annual LULC mapping in GBA over the four consecutive 
years of 2019–2022. Meanwhile, Google Dynamic World and Esri Land 
Cover are the second best for their better performances in separate years. 
The assessment shows a mean overall accuracy of 87.01% of GBACover 
for annual mapping in 2019–2022 over GBA and outperforms ESA 
WorldCover of 83.98% in 2020 and 2021, Esri Land Cover of 85.26%, 
and Google Dynamic World of 85.06%. If the accuracy assessment for 
wetlands in ESA WorldCover are excluded due to the absence of vali-
dation labels, the mean overall accuracy of ESA WorldCover 2020 and 
2021 is 85.82%, which is higher than its actual accuracy because of 
challenges in the accurate identification of wetlands. It is worth noting 
that there is temporal variance in the classification accuracy of 
composited LULC maps across different lengths of periods. Despite the 
GBACover achieving a mean overall accuracy of 87.01% at an annual 
scale, the validation of the time series LULC maps generated by the 
proposed method reports a mean overall accuracy of 80.13% at a near 
real-time scale. This accuracy was determined by validating LULC maps 
against manually interpreted samples over the study area. 

In terms of the LULC mapping accuracy of the different products for 
specific classes, for a fair comparison with Esri Land Cover, where the 
grass and scrub are merged into rangeland, we also combine these two 
classes in other products for the accuracy assessment as shown in Ap-
pendix Table 2. The accuracy validation results for the specific classes 
shown in Fig. 5 indicated that all products acquired overall satisfactory 
classification results for classes of water, trees, and built area even 
though GBACover has an overall higher accuracy in the annual LULC 
maps for most classes with the exception of bare ground among the 
compared products. Although the classification of flood vegetation, 
rangeland, and crops is challenging, and the accuracy in terms of F-score 
for these classes is less satisfactory compared with other classes, the 
results of GBACover for these hard-classified classes show an obvious 
improvement, especially for flooded vegetation and rangeland. The 
annual LULC maps over GBA in the consecutive 4 years from 2019 to 
2022 are shown in Fig. 6 for detailed visual comparisons. The compar-
ison over the local area is shown in Fig. 7, which confirms the superiority 
of GBACover compared with other LUCL products. 

4.3. Influence assessment of cloud coverage on LULC mapping 

The masks from QA60, Sen2Cor, s2cloudless, and masks generated 
by the proposed SIFDM model before and after time series refinement 
are involved in the comparisons to quantitatively evaluate the influence 
of the accuracy of cloud and cloud shadow masks on LULC mapping. 
Specifically, the time series LULC maps, generated based on the original 
Sentinel-2 time series without reconstruction, are validated with the 
manually labeled samples in GBA. The cloud/cloud shadow contami-
nated pixels, identified by the compared masks, are excluded from the 
generated time series LULC maps before validation. This process allows 
for the evaluation of LULC mapping performances with different masks. 
The 1188 manually labeled LULC-unchanged sample pixels introduced 
in Section 2 were used to evaluate the overall accuracy of the pixels’ 
time series LULC classification results, in which each pixel’s time series 
was assumed to remain in the same classes over the study period. The 
result shows a total of up to 419,861 pixels used for the accuracy eval-
uations. The number of pixels involved for accuracy evaluation varies 
with different masks, due to the exclusion of different percentages of 
invalid cloud/cloud shadow contaminated pixels identified by the 
compared masks. In addition, two collections of masks generated from 
the grayscale cloud probability maps of s2cloudless with different 
binarization thresholds (i.e., 25 and 50) are involved for comparisons. 
The accuracies of the initial masks generated by SIFDM and their refined 
masks are separately evaluated for fair comparisons. 

The detailed accuracy evaluation results for the time series LULC 
maps produced using different cloud masks are provided in Table 4, 
which show significant overall accuracy differences. Specifically, the 
utilization of the refined and initial cloud masks generated by SIFDM, 

Table 2 
Accuracy comparison of the classification models for LULC mapping on the validation samples from Dynamic World training dataset.  

Class (% of pixels) Water 
(22.34%) 

Trees 
(29.40%) 

Grass 
(1.30%) 

Flooded 
Vegetation 

(1.39%) 

Crops 
(25.37%) 

Scrub 
(5.47%) 

Built Area 
(9.18%) 

Bare Ground 
(3.49%) 

Snow/Ice 
(2.06%) 

OA 

DW-Net 
(Brown 
et al., 
2022) 

PA 96.80% 97.50% 60.60% 68.90% 74.70% 61.70% 95.30% 92.20% 100.00% 

88.40% 
UA 98.60% 87.50% 28.80% 86.00% 97.10% 64.90% 96.70% 62.90% 78.20% 

mIoU / / / / / / / / / 
F- 

score 
0.977 0.922 0.390 0.765 0.844 0.633 0.960 0.748 0.878 

SIFDM 
(this paper) 

PA 98.83% 96.41% 53.69% 90.20% 90.88% 94.33% 97.77% 50.54% 99.89% 

93.39% 
UA 99.68% 96.71% 75.31% 86.74% 99.41% 52.82% 96.48% 97.69% 98.27% 

mIoU 0.985 0.933 0.457 0.793 0.904 0.512 0.944 0.499 0.982 
F- 

score 0.993 0.966 0.627 0.884 0.950 0.677 0.971 0.666 0.991 

Note: Both models were validated with the same validation samples from Dynamic World training dataset, in which ground truths in validation samples were 
composited using the voting scheme “Three Expert Strict”, that is, where all three expert annotators labeled and all agreed. The accuracy of DW-Net (i.e., the model 
used to produce the Google Dynamic World LULC product) was collected from the original Dynamic World paper (Brown et al., 2022). 

Table 3 
Accuracy comparison of the annual LULC products of the GBA in 2019–2022.  

Product Name /Overall 
Accuracy 

2019 2020 2021 2022 Mean 

ESA WorldCover 
(Zanaga et al., 2021) 

N/A 83.63% 84.32% N/A 83.98% 

Esri Land Cover 
(Karra et al., 2021) 84.82% 85.50% 85.98% 84.75% 85.26% 

Google Dynamic World 
(Brown et al., 2022) 85.36% 85.86% 85.10% 83.91% 85.06% 

GBACover 
(this paper) 

87.28% 87.65% 86.97% 86.15% 87.01% 

Note: Considering the differences of the LULC types among the products, the 
manual flooded vegetation labels are used to evaluate the accuracy of wetlands 
for the ESA WorldCover product; thus, its overall accuracy is only for the relative 
comparison purpose. The manual validation labels of grass and scrub are merged 
for accuracy assessment of rangeland defined in Esri Land Cover product. 
Detailed comparisons of class definitions among the LULC products are provided 
in Appendix Table 2. 
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which perform best in cloud and cloud shadow masking compared with 
other compared masks (Table 1), results in the best overall accuracies of 
81.16% and 68.06% for the time series LULC mapping, respectively. The 
refined masks can even contribute to a higher overall LULC classification 
accuracy than the original masks generated by SIFDM, confirming the 
benefits of time series refinement for improving the accuracy of cloud 
masks. More accurate cloud masks contribute to the higher accuracy of 
LULC mapping. The two collections of masks generated by s2cloudless 
result in the overall LULC classification accuracy of 59.35% and 57.04% 
with two different binarization thresholds of 25 and 50 for the grayscale 
mask segmentation, respectively. The overall accuracy of the LULC 
classification with Sen2Cor masks is 64.21%, which is higher than that 
of s2cloudless, potentially due to the additional cloud shadow infor-
mation labeled in Sen2Cor masks. The less accurate cloud masks from 
QA60 result in an overall LULC classification accuracy of 47.99%, which 

is worth the users’ attention for the application of QA60 masks for 
Sentinel-2 image interpretation. 

The above-mentioned results of influence assessments of the cloud 
coverage provide an intuitive impression of how much the accuracy of 
the cloud mask affects the accuracy of LULC mapping. However, it is 
noteworthy that the accuracy of cloud masks is rarely considered in 
studies relevant to satellite image interpretation based on deep learning 
(Rußwurm and Körner, 2020; Turkoglu et al., 2021). This oversight 
raises concerns regarding the accurate mapping of land and water dy-
namics with optical satellite images, especially in cloudy conditions. 
This paper not only provides a comprehensive methodology for LULC 
mapping in cloud-prone areas by incorporating advanced cloud masking 
and LULC classification models but also assesses the influences of cloud 
masks on LULC mapping. The assessment reveals that LULC mapping 
accuracies vary significantly, from 47.99% to 81.16%, when applying 

Fig. 5. Accuracy assessment results of the annual LULC products over different classes in 2019–2022. The annual LULC maps of ESA WorldCover in 2019 and 2022 
are not available; thus, they are not involved in the comparisons. Meanwhile, the classification accuracy of wetlands in ESA WorldCover 2020 and 2021 is evaluated 
with the manual flooded vegetation labels and can only be relatively compared. Similar to Esri Land Cover products, the classes of grass and scrub are merged into 
rangeland for convenience of comparison among different products. 
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different cloud masks, thus underscoring the importance of accurate 
cloud masks for time series LULC mapping. 

5. Discussion 

5.1. Benefits of time series reconstruction for LULC mapping 

This study applied Whittaker filtering for the time series recon-
struction of the contaminated pixels in the image time series, which is 
expected to benefit dealing with LULC mapping in cloud-prone areas. In 

Fig. 6. Comparison of GBACover with other LULC products in 2019–2022.  

Fig. 7. Comparison of LULC mapping in the Pearl River estuary region in 2019–2022.  
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Fig. 8, taking LULC mapping in agriculture land as an example, an 
agriculture land can either be covered by water or planted with crops, 
and the land cover change between water and crops may occur several 
times within a year. In this case, the mapping results vary with the 
involved images for LULC mapping, resulting in biases for mapping of 
LULC types that involve land and water interactions (e.g., crops and 
wetland). The accurate mapping of the LULC types that involve land and 
water interactions becomes more challenging because the cloud 
coverage on the image time series randomly occurs. Reconstruction of 
the cloud- or cloud shadow-contaminated areas in the image time series 
is necessary for the accurate LULC mapping to minimize the biases and 
errors in time series mapping caused by the random cloud coverage and 
selected images. Composting high-quality annual, seasonal, and even 
monthly LUCL maps is possible because of the reconstructed cloud-free 
image time series. The time series change patterns can be considered to 
refine the mapping results. 

5.2. Annual LULC mapping with dense image time series 

Existing annual LULC products are typically produced based on im-
ages acquired during the vegetation growing season (Chen et al., 2015; 
Yang and Huang, 2021). However, optical satellite imagery suffers from 
dense cloud coverage during these rainy and cloudy seasons, resulting in 
limited available cloud-free images for the annual LULC mapping. 

Accordingly, the annual mapping results are generated only based on 
one or several valid satellite observations. In this study, the annual LULC 
maps are generated and composited based on all available Sentinel-2 
images for a year. Post-classification processing for the time series 
LULC maps is additionally conducted to improve the time series con-
sistency and filter out noises. Consequently, the accuracy and robustness 
of the annual LULC mapping can be improved and enhanced. LULC 
mapping with dense image time series holds promise in capturing the 
periodic LULC change patterns (e.g., the land and water interactions in 
crop areas), which can be identified through the time series post- 
classification processing and analysis. In Fig. 9, the frequencies of the 
LULC types can be acquired from dense time series LULC maps, from 
which the annual LULC change trends can be quantitatively measured 
with high accuracy and in an intuitive manner (e.g., the change trends 
from crops to built area over the 4 years). Therefore, dense time series 
post-classification processing and analysis benefit LULC mapping in 
terms of accuracy and robustness. 

5.3. Limitations 

Although the proposed time series LULC mapping method achieved 
better performances than the compared methods in terms of cloud 
masking and LULC classification, the limitations still exist with the 
proposed method. On the one hand, the performance of deep models is 

Table 4 
Accuracy comparisons of time series LULC mapping using different cloud masks.  

Cloud masks used QA60 Sen2Cor s2cloudless (>50) s2cloudless (>25) SIFDM (Initial) SIFDM (Refined) 

OA of LULC mapping 47.99% 64.21% 57.04% 59.35% 68.06% 81.16% 

Note: Two collections of masks generated from grayscale cloud probability maps of s2cloudless with different binarization thresholds are involved for comparisons. 
The accuracies of initial masks generated by SIFDM and their refined masks are evaluated separately for fair comparisons. 

Fig. 8. Comparisons of time series mapping with the original and the reconstructed cloud-free images. The upper figure denotes the results generated with the 
original images, in which the missing points in the time series are caused by cloud coverage. The middle figure refers to the time series mapping results with the 
reconstructed images and after post-classification processing. The lower figure provides the NDVI and NDWI time series derived from both the original and the 
reconstructed cloud-free images, respectively. 
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subjective to the amount and quality of training samples used in this 
study, especially the Dynamic World training dataset for the training of 
the LULC classification model, which is rough and lacks details in object 
boundaries, thus limiting the model performance in identifying slim 
ground objects with minor sizes, such as bridges and roads, and leaving 
space for further improvements with high-quality training labels. 
Meanwhile, the performance of deep models can be further enhanced by 
using state-of-the-art deep architectures, such as vision transformer 
based foundation models (Cha et al., 2023; Wang and Mountrakis, 
2023), which have been proven effective in image interpretation, to 
exploit the potentials of the proposed method. On the other hand, 
cumulated processing errors can occur because multiple steps are 
involved in the LULC method, especially the accuracy of masks, time 
series reconstruction, and LULC classification, as exemplified in Fig. 10. 
Additionally, short-term LULC changes might be hidden by clouds and 
cannot be effectively reconstructed and captured or might be smooth-
ened in post-classification processing, which will result in a decrease in 
accuracy for near real-time and monthly LULC mapping. 

6. Conclusions 

An integrated method for LULC mapping using dense Sentinel-2 time 
series is proposed in this paper. This method can be used for near real- 
time, monthly, seasonal, and annual mapping in cloud-prone areas, 
despite the temporal variance in classification accuracy across different 
lengths of periods. The proposed methods have shown their superiority 
over the compared methods in cloud masking and LULC classification by 
developing deep models for improving the accuracy of cloud masking 
and LULC classification, employing a time series reconstruction method 
for filling cloud-contaminated pixels, and applying time series post- 
classification processing and analysis. The application of the proposed 
method in the GBA suggested that it can generate accurate LULC maps, 
achieving a mean overall of 87.01% at an annual scale and 80.13% at a 
near real-time scale, thereby outperforming the compared annual LULC 
products. We evaluated the influence of cloud coverage on LULC map-
ping, suggesting the necessity of developing advanced cloud masking 
methods to improve LULC mapping accuracy, as has been done in this 
study. The benefits of time series reconstruction and LULC mapping with 
dense time series images were also discussed, which illustrate their 
contributions to LULC mapping, especially in improving mapping results 

for LULC types involved in land and water interactions and in cloud- 
prone areas. 

The deep models in the proposed method are trained on datasets 
collected globally, which can be used for LULC mapping in other regions 
worldwide beyond the study area. Meanwhile, the proposed method can 
also be applied for near real-time monitoring of a single LULC category 
(e.g., time series monitoring of cropland, wetland, and inundated land), 
thus having a broad range of potential applications. Nevertheless, the 
limitations of the proposed method in the performance of deep models 
and error propagation brought by multiple processing steps leave much 
space for further improvements, such as integrating with the state-of- 
the-art large foundation model and introducing quality control during 
the production of LULC maps. Additionally, field surveys in the study 
area are required to further validate the LULC products, especially in 
challenging mapping scenarios, such as for grass/shrub, wetland, and 
flood vegetation classes. In the future, with the introduction of more 
advanced deep models (e.g., large foundation models) and multi-modal 
data (e.g., combination of Sentinel 1 and 2), the LULC mapping with 
dense image time series in cloud- and rain-prone areas can be further 
enhanced. The potentials of SAR images can be fully exploited to benefit 
the identification of dynamic land change patterns during periods of 
persistent cloud coverages. 
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is detected out of the total number of observations in a year. 
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Appendix A  

Appendix Table 1 
The network structure of the SIFDM model.  

Module Unit level Layers Kernel size Output size Remarks 

Dual encoders 

Level 1 2*(Conv + BN + ReLU) 3 × 3 (512 × 512) × 64  

Level 2 Max Pooling 2 × 2 (256 × 256) × 64  
2*(Conv + BN + ReLU) 3 × 3 (256 × 256) × 128  

Level 3 Max Pooling 2 × 2 (128 × 128) × 128  
2*(Conv + BN + ReLU) 3 × 3 (128 × 128) × 256  

Level 4 
Max Pooling 2 × 2 (64 × 64) × 256  
2*(Conv + BN + ReLU) 3 × 3 (64 × 64) × 512  

Level 5 
Max Pooling 2 × 2 (32 × 32) × 512  
2*(Conv + BN + ReLU) 3 × 3 (32 × 32) × 512  

Decoder 

Level 6 Concat + (Conv + BN + ReLU) 1 × 1 (32 × 32) × 512 Concat Level 5 features from dual encoders 
Level 7 Concat + (Conv + BN + ReLU) 1 × 1 (64 × 64) × 512 Concat Level 4 features from dual encoders 
Level 8 Concat + (Conv + BN + ReLU) 1 × 1 (128 × 128) × 256 Concat Level 3 features from dual encoders 
Level 9 Concat + (Conv + BN + ReLU) 1 × 1 (256 × 256) × 128 Concat Level 2 features from dual encoders 
Level 10 Concat + (Conv + BN + ReLU) 1 × 1 (512 × 512) × 64 Concat Level 1 features from dual encoders 

Level 11 
Bilinear Upsampling + Concat – (64 × 64) × 1024 Upsample Level 6 features, then Concat them with Level 7 features 
2*(Conv + BN + ReLU) 3 × 3 (64 × 64) × 256  

Level 12 Bilinear Upsampling + Concat – (128 × 128) × 512 Upsample Level 11 features, then Concat them with Level 8 features 
2*(Conv + BN + ReLU) 3 × 3 (128 × 128) × 128  

Level 13 Bilinear Upsampling + Concat – (256 × 256) × 256 Upsample Level 12 features, then Concat them with Level 9 features 
2*(Conv + BN + ReLU) 3 × 3 (256 × 256) × 64  

Level 14 
Bilinear Upsampling + Concat – (512 × 512) × 128 Upsample Level 13 features, then Concat them with Level 10 features 
2*(Conv + BN + ReLU) 3 × 3 (512 × 512) × 64  

Level 15 Conv 1 × 1 (512 × 512) × N N is the number of classes in output 

Note: The network structure is provided using input images with a height and width of 512 × 512 as an example. The stride size is set to 1 in all relevant operations. The 
padding size in all relevant operations is adaptively set to keep the size of the feature maps unchanged. Conv: Convolution. BN: Batch Normalization.  

Appendix Table 2 
Comparisons of class definitions among LULC products (Adapted from Wang and Mountrakis, 2023).  

ESA WorldCover Esri Land Cover Google 
Dynamic 
World 

GBACover 

Permanent water bodies 
This class includes any geographic area covered for most of the year (>9 
months) by water bodies, e.g., lakes, reservoirs and rivers. Can be either 
fresh or salt-water bodies. In some cases, the water can be frozen for part of 
the year (<9 months). 

Water 
Areas where water was predominantly present throughout the year. May not 
cover areas with sporadic or ephemeral water and contains little to no sparse 
vegetation, no rock outcrop nor built up features like docks. 

Water 
Water is present in the image. 
Contains little-to-no sparse 
vegetation, no rock outcrop, 
and no built-up features like 
docks. Does not include land 
that can or has previously been 
covered by water. 

Tree cover 
This class includes any geographic area dominated by 
trees with a cover of 10% or more. Other land cover classes (shrubs and/or 
herbs in the understory, built-up, permanent water bodies, etc.) can be 
present below the canopy, even with a density higher than trees. Areas 
planted with trees for afforestation purposes and plantations (e.g., oil palm, 
olive trees) are included in this class. This class also includes tree-covered 
areas seasonally or permanently flooded with fresh water except for 
mangroves. 

Trees 
Any significant clustering of tall (~15 ft or higher) dense vegetation, typically 
with a closed or dense canopy (i.e., dense/tall vegetation with ephemeral 
water or canopy too thick to detect water underneath). 

Trees 
Any significant clustering of 
dense vegetation, typically 
with a closed or dense canopy. 
Taller and darker than 
surrounding vegetation (if 
surrounded by other 
vegetation). 

Grassland 
This class includes any geographic area (e.g., grasslands, prairies, steppes, 
savannahs, pastures) dominated by natural herbaceous plants (i.e., plants 
without persistent stem or shoots above ground and lacking definite firm 
structure) with a cover of 10% or more, irrespective of different human 
and/or animal activities, such as grazing, selective fire management etc. 
Woody plants (trees and/or shrubs) can be present assuming their cover is 
<10%. It may also contain uncultivated cropland areas (without harvest/ 
bare soil period) in the reference year. 

Rangeland 
Open areas covered in homogenous grasses with little to no taller vegetation; 
wild cereals and grasses with no obvious human plotting (i.e., not a plotted 
field). Mix of small clusters of plants or single plants dispersed on a landscape 
that shows exposed soil or rock; scrub-filled clearings within dense forests that 
are clearly not taller than trees. 

Grass 
Open areas covered in 
homogenous grasses with little 
to no taller vegetation. Other 
homogenous areas of grass- 
like vegetation (blade-type 
leaves) that appear different 
from trees and shrubland. 
Wild cereals and grasses with 
no obvious human plotting (i. 
e. not a structured field). 

Shrubland 
This class includes any geographic area dominated by natural shrubs having 
a cover of 10% or more. Shrubs are defined as woody perennial plants with 
persistent and woody stems and without any defined main stem being <5 m 
tall. Trees can be present in scattered form if their cover is <10%. 
Herbaceous plants can also be present at any density. The shrub foliage can 
be either evergreen or deciduous. 

Shrub & Scrub 
Mix of small clusters of plants 
or individual plants dispersed 
on a landscape that shows 
exposed soil and rock. Scrub- 
filled clearings within dense 
forests that are clearly not 
taller than trees. Appear 
grayer/browner due to less 
dense leaf cover. 

(continued on next page) 
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Appendix Table 2 (continued ) 

ESA WorldCover Esri Land Cover Google 
Dynamic 
World 

GBACover 

Herbaceous Wetland 
Land dominated by natural herbaceous vegetation (cover of 10% or more) 
that is permanently or regularly flooded by fresh, brackish or salt water. It 
excludes unvegetated sediment and swamp forests (classified as tree cover) 
and mangroves). 

Flooded vegetation 
Areas of any type of vegetation with obvious intermixing of water throughout 
a majority of the year. Seasonally flooded area that is a mix of grass/shrub/ 
trees/bare ground. 

Flooded vegetation 
Areas of any type of vegetation 
with obvious intermixing of 
water. Do not assume an area 
is flooded if flooding is 
observed in another image. 
Seasonally flooded areas that 
are a mix of grass/shrub/ 
trees/bare ground. 

Cropland 
Land covered with annual cropland that is sowed/planted and harvestable 
at least once within the 12 months after the sowing/planting date. The 
annual cropland produces an herbaceous cover and is sometimes combined 
with some tree or woody vegetation. Note that perennial woody crops will be 
classified as the appropriate tree cover or shrub land cover type. 
Greenhouses are considered as built-up. 

Crops 
Human planted/plotted cereals, grasses, and crops not at tree height. 

Crops 
Human planted/plotted 
cereals, grasses, and crops. 

Built-up 
Land covered by buildings, roads and other man-made structures such as 
railroads. Buildings include both residential and industrial buildings. Urban 
green (e.g., parks, sport facilities) is not included in this class. Waste dump 
deposits and extraction sites are considered as bare. 

Built area 
Human made structures and major road and rail networks. Large 
homogenous impervious surfaces including parking structures, office 
buildings, and residential housing. 

Built area 
Clusters of human-made 
structures or individual very 
large human-made structures. 
Contained industrial, 
commercial, and private 
building, and the associated 
parking lots. A mixture of 
residential buildings, streets, 
lawns, trees, isolated 
residential structures or 
buildings surrounded by 
vegetative land covers. Major 
road and rail networks outside 
of the predominant residential 
areas. Large homogeneous 
impervious surfaces, including 
parking structures, large office 
buildings, and residential 
housing developments 
containing clusters of cul-de- 
sacs. 

Bare/sparse vegetation 
Lands with exposed soil, sand or rocks, and never has >10% vegetated 
cover during any time of the year. 

Bare ground 
Areas of rock or soil with very sparse to no vegetation for the entire year. Large 
areas of sand and deserts with no to little vegetation. 

Bare ground 
Areas of rock or soil 
containing very sparse to no 
vegetation. Large areas of sand 
and deserts with no to little 
vegetation. Large individual or 
dense networks of dirt roads.  
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López-Puigdollers, D., Mateo-García, G., Gómez-Chova, L., 2021. Benchmarking deep 
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