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A B S T R A C T   

Deep learning has demonstrated its effectiveness in capturing high-level features, with convolutional neural 
networks (CNNs) excelling in remote sensing classification. However, CNNs encounter challenges when applied 
to Landsat images with limited multi-spectral bands, as they struggle to learn stable features from the spectral 
domain and integrate them with spatial features to enhance accuracy. Additionally, most CNN applications focus 
on learning features directly from the raw image, making them susceptible to spectral environment changes. To 
overcome these limitations, this paper introduces a novel approach for large-scale Land Use/Land Cover (LULC) 
extraction from Landsat OLI images. The proposed classification architecture comprises two modules. The first 
module utilizes a feature relationships matrix to generate an extent feature map (EFM), and a specifically 
designed CNN structure learns deep features from the EFM and spatial domain. In the second module, a multiple 
classifiers system (MCS) is employed to obtain shallow learning features, which are further enhanced by another 
CNN structure through continued learning. The combined features from these modules contribute to improved 
classification of remote sensing images. Experimental results demonstrate that our proposed method effectively 
acquires stable features for training deep learning models with strong generalization ability. It exhibits signifi
cant advancements in accuracy improvement and large-scale LULC extraction in the Yangtze River Economic Belt 
(YREB) in China, surpassing comparative approaches based on deep learning and non-deep learning methods.   

1. Introduction 

In the past four decades, Landsat has been widely used for large-scale 
land use and land cover (LULC) extraction in numerous studies (Phiri 
et al., 2018; Homer et al., 2020). Freely available Landsat-based LULC 
products with a 30 m resolution, including Finer Resolution Observation 
and Monitoring of Global Land Cover, GlobeLand30, and Normalized 
Urban Areas Composite Index, have been developed and widely applied 
in various scientific researches (Yu et al., 2013; Brovelli et al., 2015; Li 
et al., 2021). However, most of these products rely solely on original 
spectral features or manually selected features as inputs for the model, 
lacking an automatic feature learning process during remote sensing 
(RS) image classification, resulting in significant manual and time costs 
for data production. Additionally, traditional machine learning methods 

have certain limitations, such as the requirement for a large number of 
samples and the complexity of model training, all of which impact the 
classification accuracy of remote sensing images classification (Du et al., 
2020). This poses certain challenges for the extraction of large-scale 
LULC from Landsat images. 

In recent years, the field of RS image classification has seen signifi
cant progress with the widespread adoption and development of deep 
learning technology (Davydzenka et al., 2022; Li et al., 2024). Deep 
learning models autonomously learn deep features from data, leading to 
improved classification accuracy. Various deep neural networks, 
including convolutional neural networks (CNNs), have been effectively 
used for LULC extraction (Cheng et al., 2022; Dou et al., 2024). All of 
them are better equipped for handling large-scale datasets and demon
strate stronger generalization and portability compared to traditional 
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methods (DeLancey et al., 2019; Zhang et al., 2021a). As a result, CNNs 
have gained considerable attention in Landsat image classification, 
showing excellent performance (Xu et al., 2018b; Zhang et al., 2018; 
Zhang et al., 2022a). 

For RS image classification, CNNs can be broadly categorized into 
scene classification-based CNNs and semantic segmentation-based CNNs 
(Zhao et al.,2019; Xu et al., 2022; Maggiolo et al.,2022). Scene 
classification-based CNNs typically consist of convolutional and pooling 
layers, followed by a fully connected layer connected to a softmax layer 
that provides the predicted class distribution. These models take batches 
of scenes as inputs and yield class labels corresponding to the center 
points of the scenes. Initially used in Landsat image classification, they 
struggle with accurately identifying object boundaries due to limitations 
in scene size and receptive field, and are also time-consuming (Sharma 
et al., 2018; Zhao et al.,2019). Semantic segmentation-based CNNs offer 
solutions to these issues through end-to-end architectures consisting of 
fully convolutional layers, up or down sampling layers, skip structures, 
and other components (Zhao et al., 2019). Several semantic 
segmentation-based CNNs, including Unet, Pyramid scene parsing 
network, fully convolutional network, and VGG-16 network (Zhang 
et al., 2018; Mohith and Karthi, 2022), have been utilized for LULC 
extraction from Landsat RS images. However, it is worth noting that due 
to the 30 m spatial resolution of Landsat images, some of these models 
may lose detailed information. To address this, Zhao et al. (2019) pro
posed the entropy and Markov random field model-CNN to reduce pixel 
uncertainty in Landsat images while preserving detailed information, 
achieving high-quality LULC extraction at a large scale. However, the 
authors utilized the Global Land Cover 30, which has an overall accu
racy (OA) of 80 %, as labels for the training set. Further evaluation is 
needed to assess the impact of the remaining 20 % error on classification 
accuracy. 

Many CNN-based methods have primarily focused on learning 
spatial features from RS images. However, RS images are characterized 
by multispectral features, highlighting the need to incorporate spectral 
information into CNN-based methods to achieve spectral-spatial 
learning and enhance RS image classification. Recent attention has 
been given to CNN-based spectral-spatial methods, particularly in 
hyperspectral image classification, leading to the development of 
excellent models such as three-dimensional CNN, spectral-spatial re
sidual network, and S3Net (Paoletti et al., 2018; Zhong et al., 2018; 
Zhang et al., 2021b). Hyperspectral imagery provides rich spectral in
formation for deep feature extraction. However, extracting deep fea
tures from multispectral images with relatively fewer bands presents a 
challenge. Consequently, researchers are actively exploring the utiliza
tion of combined spatial and spectral features for LULC extraction in 
multispectral imagery. For instance, permuted local spectral-spatial 
convolutional network has been employed for PolSAR-Multispectral 
data (Gopal Singh et al., 2020), while spectral-spatial convolution 
neural networks have been utilized for object-oriented RS image clas
sification (Cui et al., 2018), among others. However, the development of 
CNN-based spectral-spatial models for large-scale LULC extraction from 
Landsat images remains scarce due to the limited number of bands and 
resolution constraints. Further research is needed to explore how to 
implement spectral-spatial deep learning methods for Landsat image 
classification. 

Continuous learning and building upon existing knowledge have 
proven to be effective in improving classification accuracy. Drawing 
from this principle, Dou et al. proposed the deep-shallow learning (DSL) 
method in 2021 (Dou et al., 2021a). This approach leverages multiple 
shallow classifiers to initially classify the image, and then combines the 
classification results with the original data as new features for deep 
learning classification. DSL benefits from ensemble learning (Dou et al., 
2021a; Abdali et al., 2024), overcoming the limitations posed by the 
scarcity of bands in RS images, and has demonstrated excellent perfor
mance in classifying multispectral RS images, including Landsat images. 
However, the original DSL model focuses primarily on pixel-level 

classification and lacks spatial features. By incorporating CNNs-based 
models known for their ability to extract deep spatial features, it is 
anticipated that the classification performance of DSL can be further 
improved while building upon its original foundations. 

Based on the above analysis, learning spectral-spatial features from 
Landsat images and continuing with deep learning on the basis of 
shallow classification results, is expected to yield stable features. In this 
paper, we propose a new method called the feature relationships matrix- 
based deep-shallow learning (FRM_DSL) for large-scale LULC extraction 
from Landsat images. This approach combines spectral-spatial CNNs 
with the DSL framework. Initially, we employ a feature relationship 
matrix (FRM) to create an extended feature map (EFM) and devise a 
CNN architecture for spectral-spatial feature extraction. Furthermore, 
we integrate a shallow learning module to improve classification per
formance of the FRM_DSL model. This novel approach successfully ex
tracts detailed LULC information from Landsat OLI images on a large 
scale. 

2. Study area and data 

2.1. Study area 

In order to gather a sufficient number of samples to extract repre
sentative land use features for large-scale LULC classification research, 
this paper selects the Yangtze River Economic Belt (YREB) in China as 
study area (Fig. 1). The YREB spans across China from east to west, 
characterized by complex terrain and diverse climate variations. The 
average annual temperature ranges from 14.2 to 17.8 ◦C, with precipi
tation levels varying between 873.9 and 2397.5 mm. The YREB holds 
great significance for China. It covers 21.3 % of China’s total land area 
(approximately 73,634.75 km2) and supports over 40 % of the country’s 
population and gross domestic product (Xu et al., 2018a; Han et al., 
2021). 

2.2. Data description 

A total of 308 Landsat 8 Operational Land Imagery (OLI) images, 
acquired in 2019 and 2020 and with a cloud cover of less than 5 %, were 
downloaded from the US Geological Survey website. For the classifica
tion purposes of this study, we exclusively employed bands 1 to 7 with a 
30-meter resolution. Subsequently, using ENVI software and high- 
resolution images from Google Earth, experts conducted a comprehen
sive analysis of all the images and meticulously selected evenly 
distributed regions of interest (ROIs) with typical features as samples. 
The classification schedule and number of sample ROIs are outlined in 
Table 1. 

Accurately distinguishing fallow land and bare soil based solely on 
spectral information from the Landsat OLI posed a challenge. Therefore, 
the bare land in this study includes fallow land. Following the sampling 
process, experts cross-checked each other’s work to ensure high-quality 
ROIs for the samples. Subsequently, all the images were clipped into tiles 
with a pixel size of 64 × 64, discarding any tiles that did not contain 
ROIs. Finally, the ROIs were utilized to assign labels to each tile, pro
ducing datasets for spring, summer, autumn and winter. 

3. Methods 

3.1. Space-spectrum joint classification based on feature relationship 
matrix 

Space-spectrum joint deep learning approaches have shown prom
ising results in enhancing the accuracy of RS image classification (Pan 
et al., 2019; Gao et al., 2020). However, when dealing with Landsat 
images, which have only a few multi-spectral bands, learning deep 
features solely from the spectral domain becomes challenging, and 
subsequently merging them with deep spatial features to improve 
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classification accuracy poses additional difficulties (Pasquarella et al., 
2018). In order to overcome these challenges, we utilized the spectral 
bands to establish a FRM to obtain an EFM. Our approach incorporated 
CNN structures designed to learn deep features from both the spatial and 
spectral domains. The proposed model consists of two key modules: the 
spatial feature learning module and the EFM learning module. A visual 
representation of the model is illustrated in Fig. 2. 

3.1.1. Extended feature map with use of feature relationship matrix 
The limited number of spectral bands in Landsat images can have a 

negative impact on the accuracy of LULC extraction. To overcome this 
limitation, a novel approach involves mapping features derived from the 
spectral bands into a two-dimensional domain and subsequently using 
CNNs to extract deep features (Dou and Zeng, 2020). In this study, we 
employ the FRM to establish an EFM, which maps the enhanced features 
of the Landsat OLI image into a two-dimensional domain. Firstly, each 

pixel in an image is represented as a vector, with its entries corre
sponding to the spectral features in each band. The value of each pair of 
entries is then calculated using expression (1) as follows. 

Vij = a × bandi + b × bandj (1)  

where i = 1, 2,…, n; j = 1, 2,…, n; n is the band count of a Landsat image; 
a and b are two mutually unequal constants and their default values are 
0.25 and 0.75, respectively. 

The OLI images utilized in this paper consist of 7 bands, resulting in a 
7 × 7 FRM matrix for each pixel. In order to obtain feature maps of the 
same size as the input tiles after multi-layer convolution, we padded the 
FRMs with the average value of the 7 bands to expand their size to 8 × 8. 
Subsequently, we rearranged all the FRMs in the order of pixels in the 
tile, generating a new feature map with a size of (8 × 64)×(8 × 64). This 
transformation allowed us to convert all the information from the FRMs 
into a two-dimensional plane, making it more convenient for the 
network to learn deep features using a CNN architecture. We referred to 
this new feature map as EFM. 

3.1.2. Convolutional neural networks for classification 
It is evident that the features learned from the EFM are pixel-wise 

and lack spatial information. This limitation hampers the ability of the 
EFM-based framework to achieve higher accuracy. To address this issue, 
we have designed a dedicated module to extract spatial features from the 
original image as shown in Fig. 2. This module consists of three residual 
network (ResNet) blocks, with each convolutional layer utilizing a 2 × 2 
filter size and a stride of 1 pixel. We have specifically selected a 2 × 2 
filter size over others to primarily extract more detailed features from 
EFM and image space while avoiding the inconvenience caused by 
feature blurring. Unlike traditional ResNet architectures, our module 
adopts a fully convolutional design, and the output feature layer pre
serves the same size as the input patch. 

Subsequently, the output layer of the ResNet module and the output 

Fig. 1. Study area.  

Table 1 
Class schedule and number of sample ROIs for this study.  

Class Label Number of sample ROIs Total 
number 

Spring Summer Fall Winter 

Cropland CL 1199 679 1331 1682 4891 
Forest FO 1773 1036 3160 2210 8179 
Grassland GR 329 542 1030 799 2700 
Shrub SH 1118 1140 107 1591 3956 
Wetland WL 524 523 1722 740 3509 
Water body WB 4276 1103 2703 3982 12,064 
Impervious 

surface 
IS 1779 905 1994 2026 6704 

Bare land BL 1806 1048 1969 3373 8196 
Ice and snow IAS 298 88 756 765 1907 
Total Number of sample 

ROIs 
13,102 7064 14,772 17,168 52,106 

Total number of tiles 6540 4203 9057 8543 28,343  
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layer of the EFM module are merged together using a merging layer 
(Fig. 2). This is followed by another convolutional layer and a softmax 
function to produce the final classification map. Due to the lower reso
lution and higher presence of mixed pixels in Landsat images compared 
to high-resolution remote sensing images, it is crucial to maintain the 
image details. Having excessively deep convolutional layers could 
negatively impact the recognition of object boundaries. Hence, this 
study employs ResNet blocks to retain detailed information during the 
learning process of deep spectral features. 

In traditional RS image semantic segmentation tasks, all pixels in the 
training set are typically labeled. However, when it comes to large-scale 
classification, collecting such a comprehensive training set becomes 
extremely challenging. In our research, the training data for classifica
tion is highly sparse. Therefore, we need to compute the cross-entropy 
loss only with the pixels that are present in the training sample ROIs, 
while ignoring the pixels that are outside the ROIs. To facilitate this, we 
utilize a mask matrix to assist in the calculation of the loss, as proposed 
by Xu et al. (2020). 

Let Y be the ground truth matrix with size of 64 × 64 in the training 
set, the mask matrix M can be defined as equation (2). 

(2)  

M denotes whether pixel (μ,ν) belongs to the training set (M(μ,ν) = 1) or 
not. The M is utilized during the network stage, and the optimization of 
the network can be accomplished with the RMSprop optimizer and 
categorical-cross-entropy loss function (Tieleman and Hinton, 2012). In 
this paper, the model is fit for 500 training epochs, and the learning rate 
set as 0.001. 

3.2. Feature relationships matrix based deep-shallow learning 

The outcomes obtained through shallow learning have been recog
nized as valuable feature information that can enhance the classification 
accuracy of deep learning (Dou et al., 2021a). To further enhance the 

classification performance, we have integrated the concept of DSL into 
the SSJC_ERM framework, resulting in FRM_DSL. The process of remote 
sensing image classification using FRM_DSL is illustrated in Fig. 3. 

Firstly, the SSJC_ERM network is employed to learn the joint space- 
spectrum features from the input image. Subsequently, a multiple clas
sifiers system (MCS) is utilized to classify the input image, yielding a 
series of soft classification results. These soft classification results 
represent the predicted probabilities of different classes by each base 
classifier. Next, the soft classification results are input into the con
volutional layers, generating feature maps. These feature maps are then 
multiplied with the feature maps derived from the SSJC_ERM module, 
producing new feature maps. In order to retain the spatial characteris
tics, the new feature maps are concatenated with the feature maps 
derived from the SSJC_ERM module. Finally, the concatenated feature 
maps pass through a Softmax layer to generate a LULC map for the input 
image. 

To facilitate the training process of shallow classifiers within the 
MCS, we employed the Classification and Regression Tree (CART) al
gorithm to implement the shallow learning module. To mitigate the 
impact of hard labels produced by the base classifier on the classifica
tion, we utilized the predicted probabilities for each class as soft labels. 
These soft labels were then employed to generate the output of the MCS. 
This approach helps to alleviate any potential bias or errors introduced 
by relying solely on hard labels for classification. 

4. Experiments and results 

4.1. Comparing methods 

To evaluate the experimental results, three classification strategies 
were employed on the test data. The first strategy involved disregarding 
the spatial feature extraction module in the SSJC_ERM and directly 
utilizing the EFM feature extraction module for classification. The sec
ond strategy employed the SSJC_ERM for classification, while the third 
strategy utilized FRM_DSL for classification. 

Additionally, several classifiers, both deep learning and non-deep 

Fig. 2. Sketch map of Space-spectrum joint classification based on feature relationship matrix (SSJC_ERM) model.  
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learning, were used for comparison purposes. These classifiers included 
DSL (Dou et al., 2021a), Lizhiwei Net (LZWNet) (Wang et al., 2020), 
Spectral-Spatial Fully Convolutional Networks (SSFCN) (Xu et al., 
2020), Unet, one-dimensional CNN (1D CNN) (Dou et al., 2021b), 
random forest (RF) (Talukdar et al., 2020), and Generative Extreme 
Learning Machine (GenELM). These methods have demonstrated 
promising performance in complex RS classification tasks and are 
considered representative of the current popular classification 

techniques for meaningful comparison. 

4.2. Accuracy evaluation 

To evaluate the classification performance in this study, each dataset 
was randomly divided into two parts: 80 % for training and 20 % for 
testing. To optimize the parameters of the deep learning models, we 
conducted experiments with different numbers of filters, specifically 8, 

Fig. 3. The remote sensing image classification process using the FRM_DSL.  

Table 2 
OA of the deep learning related classifiers.  

Data set Filter number EFM SSJC_ERM FRM_DSL DSL LZWNet And Unet 1DCNN 

Spring 
(BS = 32) 

8  93.90  93.91  94.46  87.68  89.70  83.39  88.27  93.90 
16  94.11  94.53  94.37  86.45  91.95  88.71  90.39  94.11 
32  94.20  95.39  95.45  89.10  93.69  91.00  89.94  94.20 
64  94.35  94.91  94.46  90.16  92.63  91.39  89.76  94.35 

Summer 
(BS = 32) 

8  84.69  85.05  87.98  77.53  68.51  49.30  74.32  47.41 
16  83.28  85.04  89.22  84.15  77.70  72.26  74.65  78.03 
32  84.44  86.57  89.53  87.52  78.82  84.51  74.21  82.59 
64  86.33  85.22  87.15  86.12  77.26  84.61  73.33  87.71 

Autumn 
(BS = 32) 

8  75.16  76.39  80.26  75.52  78.93  69.11  60.59  74.52 
16  77.91  78.23  81.65  74.95  75.11  80.11  59.82  76.98 
32  79.44  75.14  82.47  78.14  81.96  79.92  61.08  76.45 
64  73.12  79.33  82.56  79.34  80.12  80.12  62.33  81.35 

Winter 
(BS = 32) 

8  78.05  82.34  86.16  76.22  58.33  38.53  62.96  73.17 
16  81.45  86.32  88.30  78.96  77.42  86.01  65.60  71.16 
32  83.28  86.62  89.82  81.44  78.78  86.35  63.31  73.11 
64  84.29  86.76  89.13  82.33  74.94  86.70  65.33  77.84 

Average of max OA 
(BS = 32) 

86.10  87.01  89.34  84.84  83.31  85.71  73.24  85.31 

Average of max OA 
(BS = 16) 

85.22  84.98  87.40  79.96  80.33  83.26  71.65  83.88 

Average of max OA 
(BS = 64) 

86.01  86.22  88.95  81.99  82.35  84.88  73.06  84.97  
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16, 32, and 64, and batch sizes (BSs) of 16, 32, and 64. The number of 
epochs was set to 500, and the snapshot with the highest accuracy was 
considered as the final classification accuracy. After thorough testing, it 
was determined that a batch size of 32 yielded the best results among 
these experiments. To ensure a fair comparison, we standardized the 
batch size for all models to 32. The corresponding overall accuracies 
(OAs) for different filter numbers are shown in Table 2. Finally, we select 
the classifiers with the best results for comparative and analysis, and the 
classification results at the per-class level are depicted in Fig. 4. 

When considering the average maximum OA of the classifiers across 
the four datasets, it can be observed that the proposed method generally 
outperformed the deep learning methods used for comparison. The 
mean values of the maximum OA achieved by EFM, SSJC_ERM, and 
FRM_DSL on the four datasets were 86.10 %, 87.01 %, and 89.34 %, 
respectively. In contrast, SSFCN and 1DCNN attained high accuracies of 
85.71 % and 85.31 %, respectively. On the other hand, Unet exhibited 
the lowest accuracy, reaching only 73.24 %. This could be attributed to 
the fact that Unet is designed with a deeper structure for image semantic 
segmentation. However, in this experiment, training was only con
ducted using a portion of the pixels, which resulted in a lower classifi
cation accuracy. 

The division of the dataset in the experiment enables us to assess the 
performance of classification models. However, it should be noted that 
the testing data is not completely independent of the training data, and 
instances belonging to the same image may exhibit a high level of cor
relation. This can make it challenging to accurately gauge the robustness 
and portability of the classification models. To address this concern, we 

employed the classification models trained on one season’s dataset to 
classify the testing datasets of the other three seasons. This approach 
allowed us to evaluate the robustness and portability of the models. The 
classification accuracy results are presented in Table 3, providing in
sights into the performance of the models across different seasons. 

To enhance clarity, we have categorized the accuracy of the classifier 
when evaluated on validation data from the same season as local ac
curacy (LA), while the accuracy when evaluated on validation data from 
a different season is referred to as non-local accuracy (NLA). As depicted 
in Table 3, substantial differences emerge in the accuracy of these 
classifiers when utilizing samples from different seasons. For instance, 
the LA for the spring dataset demonstrates a high accuracy of over 88 %. 
However, when these classifiers were tested on samples from other 
seasons, the NLA was lower than the LA. This discrepancy is primarily 
attributed to the temporal variation in spectral features exhibited by 
certain objects in RS images, which is not adequately represented in the 
samples collected for the experiment. 

In the experiment, our expectation was that a classifier would exhibit 
a high NLA, at least comparable to the LA. To evaluate this, we calcu
lated the differences between LA and NLA, as illustrated in Fig. 5. It can 
be observed that our proposed methods exhibit smaller differences be
tween LA and NLA compared to most of the comparative methods. This 
indicates that our proposed methods not only achieve high classification 
accuracy but also possess strong generalization capabilities. 

Fig. 4. Final classification accuracy at the per-class level (%): (a), (b), (c), and (d) represent the evaluations carried out using the datasets for spring, summer, 
autumn, and winter, respectively. 
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4.3. LULC mapping 

By implementing the proposed method, all Landsat OLI images in the 
collection were classified for LULC mapping across the four seasons 
(Fig. 6). To ensure the reliability of the LULC data, the most commonly 
occurring value for each pixel was calculated by analyzing the stack of 
all LULC maps, resulting in the final value (Fig. 7). Due to the different 

acquisition times of the selected few-cloud images, certain spatially 
adjacent images in the western region exhibited slight boundary splicing 
in the seasonal LULC maps. This occurrence can be attributed to the 
challenging terrain and cloudy conditions, as well as the long time in
terval between the acquisition of two adjacent images during the process 
of selecting images with minimal cloud cover. In addition, classification 
errors also contribute to the presence of seam lines in the classified 

Table 3 
Evaluation of classification accuracy of various classifiers across different seasons (%).  

Methods Classifier trained by spring dataset Classifier trained by summer dataset 

Spring Summer Fall Winter Spring Summer Fall Winter 

EFM 94.35 80.29 76.56 79.22 85.37 86.33 77.52 76.56 
SSJC_ERM 95.39 80.02 75.29 78.51 85.69 84.57 76.39 80.21 
FRM_DSL 95.45 85.55 81.00 81.30 88.26 89.53 80.24 82.56 
DSL 90.16 83.27 78.26 79.91 80.12 87.52 70.56 72.36 
LZWNet 93.69 73.71 75.89 79.14 74.06 78.82 66.59 60.22 
SSFCN 91.39 81.86 74.84 80.97 90.91 84.61 76.57 70.80 
Unet 89.76 49.12 40.54 63.18 58.07 74.65 65.97 65.33 
1DCNN 90.35 83.87 67.38 79.91 68.19 87.71 73.60 77.36 
RF 88.62 70.29 60.12 66.32 69.19 74.40 65.32 60.29 
GenELM 89.24 71.24 57.59 62.27 62.32 73.24 65.22 60.23  

Methods Classifier trained by fall dataset Classifier trained by winter dataset 

Spring Summer Fall Winter Spring Summer Fall Winter 

EFM 92.37 81.59 79.44 76.33 89.32 79.23 81.27 84.29 
SSJC_ERM 94.60 83.21 78.33 78.24 93.27 80.12 81.21 86.76 
FRM_DSL 96.33 86.89 82.56 80.24 95.86 83.00 85.27 89.82 
DSL 87.27 70.12 78.34 75.16 83.27 72.33 76.33 82.33 
LZWNet 89.74 75.53 80.96 70.92 85.55 68.11 77.63 77.42 
SSFCN 94.64 81.07 79.12 78.43 91.89 78.64 84.80 84.70 
Unet 59.79 57.19 68.33 56.32 53.69 51.35 56.14 67.60 
1DCNN 92.58 79.25 76.46 77.25 87.82 75.11 80.72 77.84 
RF 67.22 62.69 76.27 60.32 80.69 60.33 70.33 72.23 
GenELM 70.95 66.89 74.32 53.69 78.22 62.26 71.24 74.36  

Fig. 5. The differences of LA and NLA for different classifiers trained by different datasets (the closer the percentage difference is to zero the better the model is).  
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images. However, these seam lines were effectively eliminated when the 
seasonal LULC maps were fused into a stable LULC map. 

We utilized classifiers trained on the spring dataset to classify an 
image acquired on April 2, 2017, along the Worldwide Reference System 
path 131, row 38. As depicted in Fig. 8, due to a lack of feature learning, 
the non-deep learning methods, RF and GenELM, exhibited poor per
formance. GenELM misclassified the majority of IS as WB, while RF 
misclassified CL as IS and bare land BL. Compared to the non-deep 
learning methods, the deep learning techniques demonstrated 
improved classification results. Especial for the proposed methods, as 
extracted more common features, they achieved superior LULC mapping 
performance compared to other approaches, and their LULC are more 
correspond to the actual ground objects in the RS image. 

5. Discussion 

5.1. Feature extraction with use of FRM_DSL 

One of the advantages of EFM is its ability to provide features using 
expression (1) in the 2D domain, and subsequently learn deep features 
from them through CNNs. This approach, unlike direct utilization of 
CNNs on raw images, offers the benefit of preserving the intricate details 
of the ground objects, which is especially crucial when dealing with 
images at resolutions of Landsat OLI. In Fig. 9, we can observe an 
example of EFM: the pixels in the original image are transformed into a 
grid point consisting of multiple pixels in EFM. This data format visually 
enhances the details, facilitating feature extraction effectively. 

Due to space constraints, it is not possible to display all feature maps 
of the models. However, we can extract the first three principal com
ponents using principal component analysis (PCA) and assess the impact 
of different methods using RGB color mode as depicted in Fig.10. 

LZWNet and Unet, with their deeper convolution structures, fail to 
produce clear feature maps when learning from the original image, most 
likely due to the absence of strict boundary constraints within the 
samples investigated in this study. Additionally, the presence of check
erboard artifacts can be attributed to uneven overlap in the deconvo
lution process. DSL and 1DCNN directly operate on individual pixels, 
which leads to the presence of “salt and pepper noise” in the feature 
maps. Notably, the features learned by these two models, particularly for 
built-up areas, lack accuracy. On the other hand, SSFCN, combining 
spectral and spatial domain features with a shallow convolution struc
ture, yields feature maps with relatively minimal ambiguity, although 
some details are still lost. EFM model excels at preserving ground details 
in its feature maps. By combining EFM with shallow learning features 
and spatial features, the objects present in the feature maps learned by 
FRM_DSL exhibit improved separability. Particularly, Fig. 10 (d) clearly 
demonstrates the significant enhancement of features in the built-up 
area, making them easily identifiable by the classifier compared to 
other methods employed, thereby improving the classification accuracy. 

5.2. Impact of the training sample size on FRM_DSL 

To investigate the impact of training sample size on classification 
accuracy, the number of training samples was increased by 10 % of the 
original training set. Fig. 11 (a) illustrates the results of the experiment 
conducted on the spring sample sets. It was observed that when the 
sample size was 10 %, FRM_DSL achieved an OA of 90.25 %, whereas the 
compared method, LZWNet, only attained an OA of 82.1 %. As the 
training sample size reached 100 %, the OA of FRM_DSL rose to 95.45 %, 
while LZWNet achieved an OA of 93.69 %. Notably, the growth rate of 
FRM_DSL’s OA with respect to training sample size was significantly 
lower compared to that of LZWNet. This characteristic suggests that to 

Fig. 6. LULC maps of the four seasons.  
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achieve higher classification accuracy, LZWNet requires a larger number 
of samples, whereas FRM_DSL can achieve better results with fewer 
samples. A similar trend was observed in the experiments conducted 
with the summer, autumn, and winter training samples. Even with 
smaller sample sizes, FRM_DSL consistently exhibited higher classifica
tion accuracy compared to other methods included in the comparison. 
However, it is worth noting that by leveraging a larger number of 
samples, the accuracy of FRM_DSL can be further improved. For 
instance, in the experiment involving the autumn sample set, the OA of 
FRM_DSL demonstrated gradual improvement as the training sample 
size increased. 

5.3. Impact of the shallow classifier on FRM_DSL 

To investigate the impact of shallow classifiers on the accuracy of 
FRM_DSL, this study explores both the number and type of these clas
sifiers. Fig. 12 depicts the influence of the number of shallow classifiers 
on the accuracy of CART-based FRM_DSL. Generally, as the number of 
base classifiers increases, the accuracy of FRM_DSL tends to improve. 
More shallow classifiers indicate higher accuracy for FRM_DSL. How
ever, when the number of shallow classifiers is small, the accuracy of 
FRM_DSL can be lower than that of the classifier used for comparison, 
resulting in a reduction rather than an improvement in accuracy. This 
suggests that with a larger number of shallow classifiers, FRM_DSL can 
learn more stable and abstract features from the outcomes of shallow 
learning, thus enhancing its classification performance. 

For further validation of the FRM_DSL, we trained shallow classifiers 
using RF, and in line with the aforementioned findings, the number of 
shallow classifiers in FRM_DSL was set to 50. It is worth noting that the 
number of CARTs plays a crucial role in RF as it directly impacts the 
classification accuracy (Breiman, 2001). Consequently, the number of 
CARTs in RF was set to 10, 20, 30, 40, and 50, respectively, to investi
gate the effect of shallow classifiers with varying accuracies on FRM_DSL 

as shown in Table 4. 
Comparing the RF-based FRM_DSL with the CART-based FRM_DSL, it 

is evident that the classification accuracy of the former is significantly 
higher. This can be attributed to the fact that a single CART is equivalent 
to having only one CART in RF, resulting in shallow classifiers with 
lower accuracy. However, as the number of CARTs in RF increases from 
10 to 50, the accuracy of shallow classifiers improves, leading to further 
enhancements in the accuracy of the respective FRM_DSLs. This in
dicates that, apart from the number of shallow classifiers, the perfor
mance of FRM_DSL can also be improved by employing shallow 
classifiers with higher accuracy. 

Furthermore, we conducted a comparison of the number of epochs 
required to achieve maximum accuracy for both CART-based FRM_DSL 
and RF-based FRM_DSL during training. Interestingly, we found that 
when the average accuracy of the shallow classifier is higher, RF-based 
FRM_DSL achieves the highest accuracy with fewer epochs. This obser
vation suggests that the shallow learning module of FRM_DSL obtains a 
preliminary understanding of the target object, and utilizing these re
sults as input to the deep learning network enables faster identification 
of the optimal solution during training, thereby improving convergence 
speed. 

It is important to note that in a serial scenario, the number of shallow 
classifiers may increase the complexity of the model. However, the 
generation of each shallow classifier is an independent process, which 
also facilitates parallel processing. Therefore, in future research, it is 
necessary to optimize the model for parallel processing to further 
enhance operational efficiency. 

5.4. LULC mapping comparison with existing products 

Three scenes were selected to compare our LULC results with existing 
products: GlobalLand30 V2020 (https://www.globallandcover.com/), 
China Land Cover Dataset (CLCD) (Yang and Huang, 2021), and Global 

Fig. 7. Final LULC map.  
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Fig. 8. Classification results of Landsat OLI image with use of different classifiers.  

Fig. 9. The EFM of RS image.  
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Land Cover with Fine Classification System at 30 m in 2020 
(GLC_FCS30-2020) (Zhang et al., 2022b). These LULC products corre
spond to the same time period as our LULC data, representing the latest 
LULC products in 2020. 

Fig. 13 shows the LULC mapping results for Scene 1, with several 
ponds observed in the regions of interest within the RS image. Upon 
examining the GLC_FCS30-2020, it is apparent that while the positions 
of these WBs were discerned to some extent, there is an issue of over- 
classification, leading to a lack of accurate boundary. Additionally, the 
under-classification of WBs in GLC_FCS30-2020, and misclassification of 
some as something else like CL, is evident. Similar problems are 
observed in the CLCD dataset. In comparison, the LULC results obtained 
in this study are significantly more effective in identifying and classi
fying WBs, with the majority being correctly labeled. Furthermore, the 
LULC produced in this study offers a more comprehensive representa
tion of detailed information, such as the distribution of rivers within the 
urban area. 

Fig. 14 shows the LULC mapping results for Scene 2 in Chengdu, 
China. The mountain range to the east of the city is mainly covered by 
forests. However, in GlobalLand30 V2020, GLC_FCS30-2020, and CLCD, 
much of the mountain range was misclassified as CL, with only a few 
areas identified as FO, making the direction of the mountain range un
clear in the LULC maps. In contrast, our study’s LULC results better 
distinguish FO and CL, accurately representing the mountain range’s 
direction on the map. Additionally, our LULC results align well with the 
built-up areas observed in the RS image, while the classifications in the 

other datasets are less accurate. 
Fig. 15 shows the LULC mapping results in the mountainous area. 

However, due to the presence of shadows and variations in light in
tensity, the three datasets compared in this study often misclassified the 
shaded and sunny sides of mountains as FO and SH, respectively. Our 
LULC results accurately depict the distribution of SHs on the slopes and 
valleys without relying on the distinction between shaded and sunny 
sides, indicating higher accuracy in this particular area. Additionally, 
the methodology presented in this paper successfully extracted almost 
all WBs, while the CLCD dataset struggles to distinguish rivers accu
rately and fails to identify the lake located in the middle region, similar 
to GLC_FCS30. 

In addition to assessing the LULC mapping effects, we also conducted 
evaluations of the accuracy for different products. Initially, we randomly 
selected 100 points from each category within our LULC product. Sub
sequently, in conjunction with reference images, we compared and ob
tained the actual labels for each point as well as the LULC labels for 
various LULC products. These results were then utilized to assess accu
racy. Recognizing the stochastic nature of the samples, we repeated this 
procedure 10 times and calculated the average, resulting in an accuracy 
evaluation presented in the Table 5. The data reveals that our LULC 
exhibits a commendable overall accuracy of 84.77 %, surpassing CLCD 
with an accuracy of 83.49 %. Following closely are GLC_FCS30-2020 
and GlobalLand30 V2020 with respective accuracies of 80.03 % and 
76.89 %. Nonetheless, different LULC products demonstrate their 
unique classification advantages for various land cover features, which 

Fig. 10. First 3 main components of feature maps derived from different models using PCA.  
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are influenced by factors such as samples, image acquisition time, and 
classification methods. While our product boasts the highest overall 
accuracy, it encounters challenges in accurately classifying GR due to 

the potential confusion between GR and SH, as well as CL. The fusion of 
classification results from four quarterly periods in our product in
troduces a certain level of ambiguity, leading to some errors in 

Fig. 11. Effect of training sample size on classification accuracy.  

Fig. 12. Effect of the number of shallow classifiers on the OA of CART-based FRM_DSL.  
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classifying unstable LULC types. However, for more stable LULC types 
like CL, FO, WB, and IS, our product still achieves a commendable 
classification performance. 

6. Conclusions 

In the process of large-scale remote sensing image classification, the 
extraction of stable features plays a crucial role in constructing a clas
sifier with strong generalization ability. In this study, we have 

discovered that generating EFM for each pixel, coupled with deep 
learning utilizing CNN, not only preserves detailed ground object in
formation but also yields more stable features. Additionally, continuing 
deep learning based on the classification results obtained from shallow 
learning using MCS allows for the extraction of relatively stable features 
of ground objects. FRM_DSL integrates these two approaches to obtain a 
deep learning classifier with enhanced generalization ability. It suc
cessfully classifies Landsat OLI images across a large extent in the study 
region, namely the YREB, and achieves high accuracy in extracting LULC 
information. 

A meticulous comparative analysis of various classifiers reveals that 
FRM_DSL exhibits a remarkable ability to achieve high classification 
accuracy with a relatively smaller sample size. As the number of samples 
increases, the accuracy of FRM_DSL becomes even more pronounced. 
Additionally, the performance of FRM_DSL is greatly influenced by the 
number and accuracy of its base classifiers in the MCS module. When a 
larger number of base classifiers are utilized, FRM_DSL demonstrates 
higher accuracy. Furthermore, by incorporating more accurate base 
classifiers, the classification accuracy of FRM_DSL can be further 

Table 4 
Classification accuracy of RF-based FRM_DSL with different number of CARTs 
(%).  

Dataset Number of CARTs in RF 

10 20 30 40 50 

Spring  95.36  95.69  95.99  96.03  96.55 
Summer  89.60  89.98  90.27  90.66  90.95 
Autumn  81.65  82.99  83.56  84.33  84.66 
Winter  88.93  89.79  90.22  90.68  91.22  

Fig. 13. LULC mapping of Scene 1.  
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enhanced. 
In comparison to existing contemporaneous LULC products in 2020, 

FRM_DSL demonstrates a commendable performance in LULC mapping. 
As a result, the trained model in this study holds potential for LULC 
extraction using Landsat 8 OLI images in different regions or time pe
riods. Furthermore, with the advent of Landsat 9 OLI-2, which is now 
publicly available, utilizing the currently trained model to classify OLI-2 
data and obtain the latest LULC products presents a promising direction 
for future research continuation. 
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Fig. 15. LULC mapping of Scene 3.  

Table 5 
Evaluations of the accuracy for different LULC datasets (%).  

LULC  CL FO GR SH WL WB IS BL LAS OA Kappa 

Proposed PA  96.30  93.32  16.80  45.10  28.88  91.98  85.19  44.68  91.17 84.77 0.786 
UA  81.70  97.58  28.83  42.37  59.58  75.71  87.04  68.28  50.05 

CLCD PA  76.13  95.10  42.09  49.60  25.60  85.83  86.45  45.42  80.31 83.49 0.762 
UA  95.27  94.94  56.13  48.03  45.60  63.43  71.00  17.07  21.59 

GLC_FCS30-2020 PA  73.89  94.08  25.63  40.42  18.98  85.85  85.57  54.75  84.71 80.03 0.715 
UA  92.15  90.08  45.35  47.01  8.83  54.07  78.16  2.95  25.41 

GlobalLand30 V2020 PA  72.88  92.20  20.52  45.39  59.77  75.29  80.15  46.69  92.72 76.89 0.675 
UA  87.13  84.31  55.25  54.34  16.78  65.81  68.83  9.45  23.06  
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Appendix. Table of full names and abbreviations covered in this paper  

Full name Abbreviation 

Convolutional neural network CNN 
Land Use/Land Cover LULC 
Extent feature map EFM 
Multiple classifiers system MCS 
Yangtze River Economic Belt YREB 
Remote sensing RS 
Deep-shallow learning DSL 
Feature relationships matrix-based deep-shallow learning FRM_DSL 
Feature relationship matrix FRM 
Residual network ResNet 
Regions of interest ROIs 
Space-spectrum joint classification based on feature relationship matrix SSJC_ERM 
Classification and Regression Trees CART 
Lizhiwei Net LZWNet 
Spectral-Spatial Fully Convolutional Networks SSFCN 
One-dimensional CNN 1D CNN 
Random forest RF 
Generative Extreme Learning Machine GenELM 
Batch size BS 
Overall accuracy OA 
Local accuracy LA 
Non-local accuracy NLA 
Cropland CL 
Forest FO 
Grassland GR 
Shrub SH 
Wetland WL 
Water body WB 
Impervious surface IS 
Bare land BL 
Ice and snow IAS 
China Land Cover Dataset CLCD 
Global Land Cover with Fine Classification System at 30 m in 2020 GLC_FCS30-2020  
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