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Abstract— Recently, deep learning has been widely used for
cloud detection in satellite images; however, due to radiometric
and spatial resolution differences in images from different sensors
and time-consuming process of manually labeling cloud detection
datasets, it is difficult to effectively generalize deep learning
models for cloud detection in multisensor images. This article
propose a weakly supervised learning method for transfer-
ring deep models for cloud detection in multisensor images
(TransMCD), which leverages the generalization of deep models
and the spectral features of clouds to construct pseudo-label
dataset to improve the generalization of models. A deep model is
first pretrained using a well-annotated cloud detection dataset,
which is used to obtain a rough cloud mask of unlabeled target
image. The rough mask can be used to determine the spectral
threshold adaptively for cloud segmentation of target image.
Block-level pseudo labels with high confidence in target image are
selected using the rough mask and spectral mask. Unsupervised
segmentation technique is used to construct a high-quality pixel-
level pseudo-label dataset. Finally, the pseudo-label dataset is
used as supervised information for transferring the pretrained
model to target image. The TransMCD method was validated
by transferring model trained on 16-m Gaofen-1 wide field of
view(WFV)images to 8-m Gaofen-1, 4-m Gaofen-2, and 10-m
Sentinel-2 images. The F1-score of the transferred models on
target images achieves improvements of 1.23%–9.63% over the
pretrained models, which is comparable to the fully-supervised
models trained with well-annotated target images, suggesting
the efficiency of the TransMCD method for cloud detection in
multisensor images.

Index Terms— Cloud detection, deep learning, multisensor
images, weakly supervised learning.
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I. INTRODUCTION

CLOUDS are inevitable contaminants in optical remote
sensing images [1]. The presence of clouds leads to

information loss [2], which affects the processing and precise
application of optical remote sensing images [3], [4], [5],
[6]. Cloud detection is a crucial preprocessing step in the
processing of optical remote sensing images. Its objective is
to identify and segment the cloudy regions within an image.
Accurate cloud detection can minimize the negative impact of
clouds on image applications and enhance the usability of the
images. It is, therefore, necessary to perform cloud detection
in remote sensing images.

In recent decades, several cloud detection methods for
remote sensing images have been proposed, which can be
grouped into four main categories [7]: 1) physical rule-based
methods, 2) temporal change-based methods, 3) variational
model-based methods, and 4) machine learning-based algo-
rithms. The physical rule-based algorithms use the physical
properties of clouds to determine the threshold for cloud detec-
tion. Among these methods, the Function of Mask (Fmask) [8],
[9] identifies potential cloud regions using specific spectral
rules, such as spectral variability and brightness temperature.
Haze optimized transformation [10], [11] is also widely used
to segment the cloud region in images. The physical rule-based
algorithms are effective in some conditions [12], but they
rely on manual experience for designing the physical rules,
resulting in certain limitations for the physical rule-based
algorithms. The temporal change-based algorithms achieve
cloud detection by identifying the abrupt changes between
time-series images of the same region [13]. Cirrus cloud mask
(CMask) [14] uses a time series model to identify cloud
regions when the top of the actual atmosphere reflectance
of the Cirrus band is higher than the predicted value from
the model. The temporal change-based algorithms require a
specific quality and quantity of images to obtain an accurate
cloud mask. The variational model-based algorithms construct
a variational model based on a priori knowledge of the cloud
and clear regions in the images to achieve cloud detection [15],
[16]. The variational model-based algorithms perform well
in combining cloud detection and cloud removal; however,
these algorithms require high-quality images as input data,
so their performance may not be optimal in some cases. The
machine learning-based algorithms consider cloud detection
as an image segmentation problem [17], enabling the model
to learn cloud features from the sample set for accurate
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cloud detection. Many machine learning algorithms have
been widely applied to cloud detection, including random
forest [18], support vector machine [19], [20], and neural
networks [21], [22].

Deep learning, as a major branch of machine learning,
has made significant progress in cloud detection. Among the
different methods, the fully supervised learning methods using
manually-labeled pixel-level datasets have been intensively
studied, and their accuracy is continuously improving with the
development of deep learning [23]. These methods typically
use the spectral values of individual pixels or localized regions
as input to the model in order to generate the corresponding
results [24]. Numerous studies have designed models with
different network architectures in order to enhance the accu-
racy of cloud detection [25], [26]. Adding diverse features
to the model input, such as geographic information [27] and
texture features [28], can improve the accuracy of the model in
distinguishing clouds from other highlighted landscapes. Some
researchers have combined image segmentation technology,
such as simple linear iterative clustering (SLIC) [29] with a
convolutional neural networks (CNNs) [30], [31] to improve
the efficiency and accuracy of cloud detection.

The fully supervised learning methods, however, require
a large amount of pixel-level labels to achieve a supe-
rior performance [32]. The satellite images from different
sensors typically exhibit significant variations in spectral
reflections and spatial resolution. Deep learning models trained
on specific sensor images are difficult to apply to images
from different sensors. This means that each sensor requires
a large number of manually annotated labels in order to
achieve accurate cloud detection, which is time-consuming
and labor-intensive. As a result, weakly supervised learning
methods have been widely applied in cloud detection to reduce
the reliance on manual annotation of labels. The weakly
supervised learning methods train a deep model using low-
cost block-level label supervision [33], [34] and combined
techniques such as cloud activation maps [35] or atten-
tion mechanisms [36] to achieve pixel-level cloud detection.
Transfer learning, as a popular field in deep learning, has
been used in cloud detection tasks. It enhances the perfor-
mance of the model in the target domain by transferring
knowledge from a relevant source domain [37]. Transfer
learning-based algorithms can reduce the dependence of the
model on target domain labels and can leverage existing cloud
detection datasets for sensors that lack datasets [38]. Mateo-
Garcia et al. [39] trained a model based on the cycle-consistent
generative adversarial domain adaptation framework using
Landsat 8 data and transferred the model to Proba-V data.
Zhou et al. [40] proposed a transferable DeepLab V3+

model to achieve the cloud detection task by transferring
the PASCAL VOC 2012 dataset to a ground-based cloud
segmentation dataset.

Most of the existing cloud detection methods are, however,
developed for images captured by a single sensor, such as
Landsat [41], Sentinel-2 [42], [43], and Gaofen [44]. The
acquisition of multisensor high-resolution images is becom-
ing increasingly common, which makes it challenging to
construct a well-annotated large-scale cloud detection dataset

for each sensor. The high-resolution images have a higher
spatial resolution and fewer spectral bands [red, blue, green,
and near-infrared (NIR)], lacking efficient bands for cloud
detection [45]. It is, therefore, necessary to develop a cloud
detection method for multisensor high-resolution images that
uses the existing cloud detection datasets to train the model
and transfer it to sensors without labeled datasets. In this arti-
cle, we present a novel approach called TransMCD, which is a
weakly supervised learning method designed for transferring a
deep model to effectively detect clouds in multisensor images.
The proposed method pretrains a deep learning model using
a well-annotated large-scale dataset. The spectral features of
clouds with high reflectivity in the visible and NIR bands are
then combined with the generalization of the pretrained model
to generalize and automatically search for reliable training
samples from an unlabeled image dataset. For samples with
high confidence, the unsupervised image segmentation (UIS)
technique [46] is employed to obtain pseudo labels for model
fine-tuning.

In summary, the contributions of this article are as follows.
1) We propose a novel weakly supervised learning method

that pretrains a deep learning model using an exist-
ing cloud detection dataset and transfers the model to
unlabeled multisensor images. The method can auto-
matically extract reliable information from unlabeled
images, eliminating the need for manual annotation, and
is applicable to most deep learning models for cloud
detection.

2) We developed a framework that fuses model generaliza-
tion with the physical features of clouds to construct a
cloud detection dataset. When working with multisensor
images, the manual adjustment of the spectral threshold
is avoided by extracting the spectral threshold of the
unlabeled image using the rough cloud masks obtained
from the pretrained model.

3) Two novel datasets, GF1MS-WHU and GF2MS-WHU,
are introduced for cloud detection. The GF1MS-WHU
dataset consists of 141 unlabeled and 33 well-annotated
8-m Gaofen-1 multispectral (GF1-MS) images; further-
more, the GF2MS-WHU dataset includes 163 unlabeled
and 29 well-annotated 4-m Gaofen-2 multispectral
(GF2-MS) images. Based on the labeled images in
the two datasets, a total of 10 428 and 21 917 fully
labeled image patches have been made available at
https://github.com/whu-ZSC/GF1-GF2MS-WHU.

II. METHOD

We define a well-annotated large-scale dataset as the source
domain DS and a newly acquired dataset without any labels as
the target domain DT . The purpose of the TransMCD method
is to transfer the features learned by the CNN model from
DS to DT so that the model can accurately detect clouds in
the DT images. To transfer a CNN model for cloud detection
in multisensor images with varying imaging conditions, the
TransMCD method uses pseudo-label assignment [47] and
model fine-tuning [4], [48] techniques. The proposed method
consists of three main steps, as shown in Fig. 1. First, a well-
annotated dataset DS is used to train the CNN model, with
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Fig. 1. Framework of the proposed weakly supervised learning method for transferring deep models for cloud detection.

Fig. 2. Structure of the RegNetY-4.0GF model.

the objective of obtaining a well-trained pretrained model for
the purpose of cloud detection. Second, the pretrained model
is used to obtain a rough cloud mask MR for the DT images.
Subsequently, the spectral cloud mask MS is obtained through
the automatic extraction of the spectral thresholds by MR .
The MR and MS masks are combined to search for the DT

block-level pseudo labels with high confidence, and the DT

pixel-level pseudo labels are obtained by the optimization
of MR using image superpixel segmentation and the UIS
technique. Finally, the pretrained model is fine-tuned using the
DT pixel-level pseudo labels, in order to transfer the model to
the DT images.

A. Initializing the Pretrained Deep Models for Cloud
Detection

CNN models are widely applied in cloud detection methods.
A CNN model is made up of various layers, including convo-
lutional layers, pooling layers, and fully connected layers. The
convolutional layers are responsible for the feature extraction,
the pooling layers are responsible for the downsampling or
spatial reduction, and the fully connected layers function as
a classifier to generate the predicted probabilities. In this
study, the RegNetY-4.0GF model [49] of the RegNet family
was used as the cloud detection model. The structure of the

model is shown in Fig. 2. The RegNetY model consists of
three main components: 1) the stem component of the model
incorporates a stride two 3 × 3 convolutional layer with
32 output channels; 2) the body of the model is composed
of a series of downsampled layers, with each layer containing
a set of residual bottleneck blocks with group convolution;
and 3) the head component consists of an average pooling
layer and a fully connected layer. Because of cloud detection
being a binary classification task, we configured the number
of output channels of the prediction score from the model to
2 and normalized the prediction score to 0–1 using the sigmoid
function to obtain the cloud probability. Subsequently, pixels
with prediction scores higher than 0.5 were classified as cloud
pixels.

Under the supervision of pixel-level labels, we integrate
binary cross entropy (BCE) loss LBCE, intersection over union
(IoU) [50] loss L IoU, and structural similarity index measure
(SSIM) [51] loss LSSIM as the loss function LCombi to optimize
the model parameters. LCombi is defined as follows:

LCombi = LBCE + L IoU + LSSIM. (1)

BCE loss and IoU loss are commonly used in image
classification and image segmentation tasks. The BCE loss
measures the difference between the labels predicted by the
model and the true labels, thereby encouraging the model to
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Fig. 3. Workflow for obtaining the target-domain pseudo labels.

generate predicted labels that closely resemble the true labels.
The IoU loss measures the extent of overlap between the
predicted labels and the true labels, thereby prompting the
model to learn the shape and position information of clouds
in the true labels. The BCE loss and IoU loss can be calculated
as follows:

LBCE = −
(

y log
(

ŷ
)

+ (1 − y) log
(
1 − ŷ

))
(2) (2)

L IoU = 1 −
y · ŷ

y + ŷ − y · ŷ
(3)

where y is the true label (1 for cloud pixels and 0 for clear
pixels), and ŷ is the model-predicted probability of the pixel
being a cloud.

SSIM loss is widely applied in image reconstruction, and
it measures the degree of similarity between the predicted

labels generated by the model and the true labels. In the cloud
detection task, SSIM loss allows the model to focus on the
variations occurring at the edges of the cloud, consequently
enhancing the model’s efficacy in detecting cloud edges. The
calculation of the SSIM is conducted as follows:

LSSIM = 1 −

(
2µyµŷ + c1

)(
2σy ŷ + c2

)(
µ2

y + µ2
y + c1

)(
σ 2

y + σ 2
y + c2

) (4)

where µ is the mean value, σ is the standard deviation, and
c1 and c2 are constants, which default to 0.012 and 0.032.

B. Obtaining the Pseudo Labels of the Target-Domain
Images

Although CNN models demonstrate a certain generalization
ability, the existence of diverse imaging conditions across dif-
ferent sensors often leads to radiometric differences and scale
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Fig. 4. Workflow for obtaining the target domain block-level pseudo labels.

variations among images. These factors ultimately diminish
the superior performance of CNN models in the context of
multisensor cloud detection. In order to attain accurate cloud
detection results in the DT images using a deep learning
model, we propose a framework for constructing the DT

pseudo-label dataset. This framework combines the physical
features of clouds with the generalization ability of the pre-
trained model, enabling the automatic extraction of highly
reliable pseudo labels from the target domain for model
transfer. The workflow for obtaining the DT pseudo labels is
shown in Fig. 3, which is divided into two parts: 1) obtaining
block-level pseudo labels based on adaptive multispectral (MS)
thresholding and 2) obtaining pixel-level pseudo labels based
on unsupervised superpixel segmentation.

1) Obtaining Block-Level Pseudo Labels Based on Adaptive
Multispectral Thresholding: For the DT image, we use the
generalization ability of the pretrained model to obtain the
DT rough cloud mask MR ; however, MR typically exhibits
a high rate of leakage recognition and an error recognition
rate that hinders its ability to directly construct a pseudo-label
dataset for model fine-tuning; thus, MR is cropped and the
mask blocks with high confidence are chosen as the DT

pseudo labels for the purpose of model fine-tuning. At first,
we calculate the spectral threshold for the DT image based
on MR . The DT spectral threshold is obtained by counting
the average spectral features of the DT image across the
cloud coverage in MR . In this study, three spectral feature
parameters were chosen: 1) the whiteness index (WI) [4];
2) hue, saturation, intensity (HSI) [52]; and 3) reflectance
in the NIR band. Subsequently, we obtain the DT spectral
cloud mask MS based on the hybrid MS thresholding. The WI
uses the absolute difference between each visible band and
the overall mean value to effectively capture the distinctive
characteristics of clouds. The reflectance characteristics of
clouds in the visible bands result in a near-zero value for the
WI of cloud pixels; therefore, the WI can be used to identify

cloud pixels. The calculation of the WI is as follows:

WI =

3∑
i=1

∣∣∣∣Bandi − MeanVis
MeanVis

∣∣∣∣ (5)

where Bandi is the visible band (red band, blue band, and
green band), MeanVis is the average of the visible bands. The
closer the WI of the pixel is to zero, the higher the probability
that the pixel is cloud.

Clouds have the feature of high intensity and low saturation;
therefore, the conversion of the image from the red, green, and
blue (RGB) color model to the HSI color model is conducted
in order to accentuate the cloud regions. The process of
converting RGB to HSI is defined as follows:

H =

{
θ, BandG ≥ BandB

360 − θ, BandG < BandB
(6)

S = 1 −
3 × min(BandR, BandG, BandB)

BandR + BandG + BandB
(7)

I =
BandR + BandG + BandB

3
(8)

θ = cos−1


[(BandR−BandG )+(BandR−BandB )]

2√
(BandR − BandG)2

+ (BandR −BandB)(BandG − BandB)

 (9)

where BandR , BandG , and BandB are the values of the RGB
bands of the image. It can be seen that the cloud region exhibits
a low saturation and a high intensity. The S and I components
can, therefore, be used to differentiate the cloud region.

For each pixel (Pixeli ) in the image, we employ hybrid
MS features for the cloud detection to minimize the cloud
recognition error, as shown in Fig. 4. An intersection operation
is then performed between MR and MS to derive the hybrid
cloud mask, which is denoted as MH . Subsequently, MR , MS ,
and MH are cropped into blocks. The blocks of MH with cloud
regions exceeding 5% are classified as cloud image blocks so

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 23,2024 at 03:06:13 UTC from IEEE Xplore.  Restrictions apply. 



5609518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 5. Flowchart of the unsupervised image segmentation technique.

as to eliminate the misdetection of the pretrained model for
parts of the highlighted surface in the urban area. Blocks that
do not contain any cloud in both MR and MS are classified as
noncloud image blocks. The afore-mentioned blocks are used
for constructing the DT block-level pseudo-label dataset.

2) Obtaining Pixel-Level Pseudo Labels Based on Unsuper-
vised Segmentation: For noncloud blocks, pixel-level pseudo
labels are not required; therefore, in this section, we focus on
cloud blocks. Pixel-level pseudo labels are obtained through
the optimization of MR in DT using the UIS technique. The
UIS technique consists of four steps, as shown in Fig. 5: 1) the
cloud image blocks are segmented using the Felzenszwalb [53]
image superpixel segmentation algorithm in order to generate
an initial superpixel segmentation map; 2) the CNN model
is applied to the cloud image blocks, in order to generate
predicted labels; 3) the predicted label that occurs most
frequently in each superpixel block is assigned as the label
for that superpixel block; and 4) iteration steps 2 and 3 are
used to constantly update the model parameters to merge small
regions and obtain the final segmentation map.

C. Transferring the Deep Model for Cloud Detection in
Multisensor Images

In Section II-B, we described how we employ the gen-
eralization of the pretrained model and the hybrid spectral
features of clouds to effectively identify and select the DT

noncloud pseudo patches and cloud pseudo patches with high
confidence. The pixel-level pseudo labels of the cloud patches
are acquired using the UIS technique to construct the DT

pseudo-label dataset. Afterward, fine-tuning is conducted on
the pretrained model using the DT pseudo-label dataset to
transfer the CNN model from the DS images to the DT

images. In the process of model fine-tuning, we first mix the
DS samples and the DT pseudo labels at a ratio of 1:1, and
gradually remove the DS samples during the model iterations.
In the last few iterations, the training of the model only relies
on the DT pseudo labels to obtain the final fine-tuned model.

By incorporating the DT pseudo labels into the fine-tuning
process for the pretrained model, it becomes possible to retain
the generalized feature information of clouds from the DS

dataset. Simultaneously, the fine-tuned model can also learn
the distinctive features of clouds present in the DT dataset.
As a result, the fine-tuned model demonstrates a high accuracy
in detecting clouds in the DT images.

III. EXPERIMENTAL DATA

To obtain a model with strong generalization ability, we pre-
trained the CNN model using 108 labeled global GF-1 wide

Fig. 6. Distribution of images in the GF1-WHU dataset.

TABLE I
COMPOSITION OF THE GF1-WHU, GF1MS-WHU, GF2MS-WHU,

AND WHUS2-CD DATASETS

field of view (WFV) (16 m) images covering different land
cover types in the GF1-WHU dataset (see Fig. 6 and Table I)
[44]. Two datasets were, furthermore, constructed in this
article using 8-m GF1-MS and 4-m GF2-MS images, which
are referred to as GF1MS-WHU and GF2MS-WHU (see Fig. 7
and Table I), respectively. These datasets were used to assess
the transferability of the TransMCD method on multisensor
images with different resolutions. In the process of annotating
the cloud labels, we referred to the methodologies used in
previous studies on cloud detection [1], [44], [54]. Concretely,
the Lasso tool in Adobe Photoshop was used to manually mark
the locations of clouds. The selected cloud pixel values were
assigned the value of 255 to obtain accurate cloud labels as
ground-truth samples for the accuracy evaluation. Afterward,
we use 32 labeled 10-m Sentinel-2 images in the WHUS2-CD
datasets (see Fig. 7 and Table I) [34], [42] to further validate
the transferability of the TransMCD method on multisensor
images with different resolutions and bandwidth. Note that
this article only uses labeled images in the GF1-WHU dataset
to pretrain the cloud detection model. The labeled images in
the GF1MS-WHU, GF2MS-WHU, and WHUS2-CD datasets
were used as the training data for the fully supervised deep
learning methods, as well as the validation data for the
different methods.

A. GF1-WHU Dataset

The GF-1 satellite is configured with four WFV and two
panchromatic and MS (PMS) sensors. The WFV sensors
have four MS bands with a 16-m spatial resolution. The
WFV MS bands span the visible to NIR spectral regions.
The bandwidth information for each band is as follows: blue
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Fig. 7. Distribution of the labeled images in the GF1MS-WHU, GF2MS-WHU, and WHUS2-CD datasets and image examples of the different land-cover
types. Note that the color labels at the bottom of each image show the main land-cover type.

(0.45–0.52 µm), green (0.52–0.59 µm), red (0.63–0.69 µm),
and NIR (0.77–0.89 µm). The dataset consists of 108 labeled
global GF-1 WFV (16 m) images, which were acquired
between May 2013 and August 2016. These images encompass
all four WFV sensors and were collected from different
land cover types around the world under different cloud
conditions. The diversity of images in the dataset has been
demonstrated [55], [56] and has been provided online at
http://sendimage.whu.edu.cn/en/mfc-validation-data/.

B. GF1MS-WHU Dataset

The two GF-1 PMS sensors have four MS bands with an
8-m spatial resolution and a panchromatic (PAN) band with
a higher spatial resolution of 2 m. The spectral range of the
MS bands is identical to that of the WFV sensors. In this
study, 141 unlabeled images collected from various regions in
China were used as the training data for the proposed method.
In addition, 33 labeled images were used as the training data
for the fully supervised methods, as well as the validation
data for the different methods. The acquisition of the images
spanned from June 2014 to December 2020 and encompassed
four MS bands in both PMS sensors. Note that Fig. 7 only
presents the distribution regions of the labeled images.

C. GF2MS-WHU Dataset

The GF-2 satellite is configured with two PMS sensors.
Each sensor has four MS bands with a 4-m spatial resolution
and a PAN band with a 1-m spatial resolution. The GF-2
PMS sensors have the same bandwidth as the GF-1 WFV
sensors. In this study, 163 unlabeled images obtained from

Hubei, Jilin, and Hainan provinces were used as the training
data for the proposed method, and 29 labeled images were
used as the training data for the fully supervised methods,
as well as the validation data for the different methods. The
images were acquired from June 2014 to October 2020 and
included four MS bands in both PMS sensors.

D. WHUS2-CD Dataset

The Sentinel-2 mission provides images at three dif-
ferent spatial resolutions of 10, 20, and 60-m, which
have been widely used for cloud detection. The Sentinel-2
images were acquired by two satellites covering 13 spectral
bands. In this study, only the visible and NIR bands of
10-m Sentinel-2 satellite are used for cloud detection. The
bandwidth information for visible and NIR bands are as
follows: blue (0.458–0.523 µm), green (0.543–0.578 µm), red
(0.650–0.680 µm), and NIR (0.785–0.900 µm). The dataset
consists of 32 labeled Sentinel-2 (10-m) images distributed
over mainland China and contains a variety of land cover
types. The acquisition of the images spanned from April
2018 to May 2020. The dataset has been provided online at
https://github.com/Neooolee/WHUS2-CD.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setting

We conducted an experiment to evaluate the effectiveness
of the TransMCD method with four different deep learn-
ing models, namely, ResNet-34 [57], RegNetY-040, DeepLab
V3+ [58], and BoundaryNet [59]. We conducted a comparison
between the models generated by the TransMCD method and
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TABLE II
QUANTITATIVE EVALUATION OF RESNET, REGNETY, DEEPLAB

V3+, AND BOUNDARYNET ON THE GF1-WHU DATASET

the pretrained models, as well as the models trained using
manual labels in the fully supervised mode (ML-FS). The
ResNet-34, RegNetY-040, and DeepLab V3+ models were
trained with the pretrained weights from ImageNet [60] and
the Adam optimizer [61]. The hyper-parameters were config-
ured as follows: β1 was set to 0.9, β2 was set to 0.999, and ε

was set to 10−8. The number of epochs was set to 50, and the
initial learning rate was set to 10−5 for the pretraining and 10−4

for the fine-tuning. The learning rate was decreased by 0.1 at
the 15th and 35th epochs. The parameters of BoundaryNet
were set according to the original article [59]. We cropped the
training data to 250 × 250 and then expanded this to 256 ×

256 by padding the image edges with 0 values to minimize
the impact of black edges in practical applications. The image
enhancement strategy [62] was then used to mitigate the issue
of overfitting the model. To standardize the images obtained
from the multisensor satellites, a normalization technique was
applied where each pixel was divided by the maximum value
present in the image. During the pretraining and fine-tuning
of all models, the input are the original spectral bands (blue,
green, red, and NIR) of the images. During the training of
the fully supervised models, we partitioned the GF1MS-WHU
and GF2MS-WHU datasets into 70% training data and 30%
test data. The division of training data and test data in the
GF1-WHU [44] and WHUS2-CD [42] datasets were consistent
with the original paper. In the training and testing, all the
deep models were trained on a desktop computer (Windows
operating system, Intel Core i7-10700 CPU @ 2.90 GHZ,
32 GB RAM, and an NVIDIA GeForce RTX 3070Ti GPU
with 8 GB of memory).

B. Accuracy Evaluation Metrics

To evaluate the performance of the cloud detection models,
the experimental results are assessed here using the following
metrics: overall accuracy (OA), recall, precision, and F1-score.
These metrics can be calculated as follows:

OA =
TP + TN

TP + TN + FP + FN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F1score =
2 × Recall × Precision

Recall + Precision
(13)

where TP represents the number of pixels correctly predicted
as cloud, FP represents the number of pixels incorrectly

predicted as cloud, TN represents the number of pixels cor-
rectly predicted as noncloud, and FN represents the number
of pixels incorrectly predicted as noncloud.

C. Accuracy Assessment of the Pretrained Model for Cloud
Detection in Gaofen-1 WFV Images

To obtain a pretrained model with strong generalization
ability, we used the GF1-WHU dataset for model pretraining.
The quantitative evaluation of the four models on the GF1-
WHU dataset is shown in Table II and Fig. 8 shows some
examples of the cloud detection results.

From the examples shown in Fig. 8, it can be seen that the
results of the four models are visually satisfactory, and the
quantitative evaluation results are high, achieving an F1-score
of over 0.92. It is evident that all four models demonstrate
high accuracy in cloud detection when trained under the fully
supervised mode. Upon closer examination of the details,
it becomes evident that both ResNet and DeepLab V3+ exhibit
notable issues in recognizing cloud boundaries, which leads
to significant leakage. BoundaryNet demonstrates a higher
accuracy in detecting cloud boundaries, although it does
experience some instances of misdetection in local regions.
RegNetY achieves balanced results in cloud detection.

D. Accuracy Assessment of the Transferred Models

First, we performed fine-tuning on the pretrained models
using pseudo labels obtained from 141 unlabeled 8-m GF1-MS
images in the GF1MS-WHU dataset through the TransMCD
method. We used the pretrained model and the model acquired
by the ML-FS mode as the comparison models. The quantita-
tive evaluation of the pretrained models, the ML-FS models,
and the TransMCD models is shown in Table III. From the
results, it is evident that despite the F1-score of the four
TransMCD models being lower than that of the ML-FS mod-
els, all of the TransMCD models exhibit an improvement of
more than 1.2% when compared to the pretrained models. The
precision values of the TransMCD-ResNet and TransMCD-
BoundaryNet models are 0.8893 and 0.8474, respectively,
which are higher values than the pretrained models but signif-
icantly lower than the other methods, indicating that the two
models may have some misdetection occurrings. The recall
of the TransMCD-DeepLab V3+ model is 0.8885, indicating
that the model exhibits significant leakage recognition. The
TransMCD-RegNetY model demonstrates a balanced perfor-
mance in cloud detection. For the ResNet, RegNetY, and
DeepLab V3+ models, the F1-score of the pretrained and
TransMCD models is higher than that of the BoundaryNet
model. This indicates that state-of-the-art models may not be
more appropriate for the transfer learning task. Although the
F1-score of the pretrained BoundaryNet model is relatively
low, the optimization of the proposed method results in a
2.81% improvement. This finding suggests that the TransMCD
approach is suitable for enhancing the performance of vari-
ous cloud detection models. The accuracy of the TransMCD
models, however, is influenced by the generalization of the
pretrained models.
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Fig. 8. Examples of cloud detection results for GF1-WFV images obtained by ResNet, RegNetY, DeepLab V3+, and BoundaryNet. (a) Grass. (b) Forest
with barren land.

TABLE III
QUANTITATIVE EVALUATION OF RESNET, REGNETY, DEEPLAB V3+, AND BOUNDARYNET ON THE GF1MS-WHU DATASET

Fig. 9 gives cloud detection examples for the pretrained
mode, ML-FS mode, and TransMCD mode with the Reg-
NetY model. We can see from the results that the pretrained
model exhibits notable misdetection. Both the ML-FS model
and TransMCD model show satisfactory results overall. The
TransMCD model, however, has leakage recognition in the
small, thin cloud region. From the details, it can be observed
that the pretrained model still results in many misdetections

occurring. The ML-FS model and the TransMCD model
demonstrate superior performance in thick cloud regions,
offering more precise delineation of cloud boundaries; how-
ever, the ML-FS model achieves a better cloud detection
performance in the thin cloud regions compared to the
TransMCD model.

To further validate the transferability of the TransMCD
method on images with significant resolution differences,
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Fig. 9. Examples of cloud detection results for the GF1-MS images obtained by the RegNetY model. (a) Water with farmland. (b) Forest with farmland.

TABLE IV
QUANTITATIVE EVALUATION OF RESNET, REGNETY, DEEPLAB V3+, AND BOUNDARYNET ON THE GF2MS-WHU DATASET

we used 134 unlabeled 4-m GF2-MS images to fine-tune the
pretrained model using the proposed method. The quantitative
evaluation results of the pretrained model, the ML-FS model,
and the TransMCD model are listed in Table IV. It can
be seen that, as the image resolution increases, the task of

cloud detection becomes more challenging. In addition, the
cloud detection accuracy of the four models in the GF2-MS
images can be observed to decrease in comparison to the
GF1-MS images. The recall values of the four pretrained
models are below 0.84, which indicates that there is a lot
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Fig. 10. Examples of cloud detection results for the GF2-MS images obtained by the RegNetY model. (a) Wetland, urban, and farmland. (b) Urban with
forest.

TABLE V
QUANTITATIVE EVALUATION OF RESNET, REGNETY, DEEPLAB V3+, AND BOUNDARYNET ON THE WHUS2-CD DATASET

of leakage recognition. The four ML-FS models achieve a
high accuracy, with an F1-score exceeding 0.91. Although
the F1-score of the four TransMCD models is lower than
that of the ML-FS models, the TransMCD models demon-
strate a significant improvement in the F1-score of more

than 3.3% when compared to the pretrained models. From
the quantitative evaluation results of the GF1MS-WHU and
GF2MS-WHU datasets, it can be seen that the pretrained
model can obtain relatively satisfactory results on the GF1-
PMS image due to the small difference between the 8-m
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Fig. 11. Examples of cloud detection results for the Sentinel-2 images obtained by the RegNetY model. (a) Water, urban, and farmland. (b) Barren with
forest.

TABLE VI
QUANTITATIVE EVALUATION OF THE SPECTRAL CLOUD MASK

OBTAINED BY DIFFERENT SPECTRAL FEATURES

GF1-PMS image and the 16-m GF1-WFV image, which
results in the accuracy improvement of the TransMCD method
on the GF1MS-WHU dataset not as significant as that on the
GF2MS-WHU dataset. It also indicates that the TransMCD
method has a greater advantage in transferring images with
large resolution disparities.

Fig. 10 presents cloud detection examples for the GF2-MS
images obtained using three different methods—pretrained,

TABLE VII
QUANTITATIVE EVALUATION OF THE ROUGH CLOUD MASK,

SPECTRAL CLOUD MASK, AND HYBRID CLOUD MASK

TABLE VIII
SAMPLE NUMBERS OF THE HYBRID CLOUD MASK

AND GROUND TRUTH

ML-FS, and TransMCD—with the RegNetY model. From the
visualization results, it can be seen that the pretrained model
exhibits a limitation in accurately detecting thin clouds at the
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TABLE IX
QUANTITATIVE EVALUATION OF ROUGH CLOUD MASK AND PIXEL-LEVEL PSEUDO LABEL OBTAINED BY REGNETY

Fig. 12. Examples of the rough cloud masks, segmentation maps, and pixel-level pseudo labels for the GF1-MS images.

cloud boundaries and misdetection occurs in local regions.
Compared to the pretrained model, the TransMCD model
demonstrates enhanced accuracy in detecting cloud bound-
aries and effectively mitigates the misdetection; however, the
TransMCD model may lose certain detailed information and
may fail to detect some small clouds in local regions, leading
to less accurate cloud detection results compared to the ML-FS
model.

Then, we use 32 Sentinel-2 images in the WHUS2-CD
dataset with significant bandwidth differences from the pre-
training data to validate the transferability of the TransMCD
method. The quantitative evaluation results of the pretrained
model, the ML-FS model, and the TransMCD model are listed
in Table V. From the results, it can be seen that although
the resolution of the Sentinel-2 images is relatively similar
to the GF1-WFV images, there are bandwidth differences.
It leads to low accuracy of four pretrained models, with
F1-Score below 0.84, indicating that the bandwidth difference
of the multisensor images has a significant impact on the
accuracy of deep models in the transfer task of cloud detection.
Although the accuracy of the pretrained models is low, each
TransMCD model achieved a high improvement in F1-Score
of more than 5.2%. It shows that the TransMCD method
still has advantages in transferring images with significant

differences. Fig. 11 presents cloud detection examples for the
pretrained mode, ML-FS mode, and TransMCD mode with the
RegNetY model. From the results, we can see that exhibits of
notable omission occur in most regions. The models fine-tuned
by the TransMCD method can mitigate the majority of the
omission that occurs, but still have leakage recognition in
local thin cloud regions compared to the ML-FS model. From
the transfer experiments on three different datasets, it can be
seen that the TransMCD method can perform well in the
transfer task of multisensor cloud detection. For the either
misdetection or omission of the pretrained models in the
DT images, the TransMCD method is effective in inhibiting
the problems; however, the accuracy of the cloud detection
model fine-tuned by the TransMCD method will be affected
by both the transferability of the deep model and the difference
between the DS images and the DT images.

V. DISCUSSION

A. Accuracy Validation of the Produced Pseudo-Label
Dataset

In the process of obtaining the DT block-level pseudo
labels, we used a hybrid MS threshold to extract the spectral
cloud mask. We first validate the hybrid multispectral features
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TABLE X
QUANTITATIVE EVALUATION OF REGNETY IN THE REGION TRANSFERABILITY EXPERIMENT

TABLE XI
TIME EFFICIENCY FOR CONSTRUCTING THE CLOUD DETECTION DATASET

used for constructing the block-level pseudo labels, and the
quantitative evaluation results are shown in Table VI. Based
on the evaluation results, it is evident that MS extracted using
hybrid multispectral features combining WI, HSI, and NIR
reflectance has the highest precision of 0.9776, which can
effectively reduce the misdetection occurrings in MS , and
fewer misdetections are essential for constructing block-level
pseudo-label datasets with high confidence. Subsequently,
by conducting an evaluation of MR , MS , and MH , as shown
in Table VII, we can see that the precision of MH is 0.9956,
which indicates the absence of misdetection. The results show
that for the remaining portion of misdetection in MS , it can
be effectively eliminated by intersecting MR and MS .

We also analyzed the quantity of samples acquired using
MH and compared it to the number of samples selected
by the ground truth. The results are listed in Table VIII,
which shows that the number of samples selected by MH

is 62.3% of the total samples. The framework for automat-
ically constructing datasets for cloud detection allows for the
selection of samples from unlabeled images, thereby enabling
the acquisition of the necessary number of samples for model
training.

For image blocks with clouds, the UIS technique is
employed to enhance the precision of the pseudo labels.
Table IX shows the quantitative evaluation of the MR and the
pixel-level pseudo labels for cloudy image blocks obtained by
RegNetY. The results show that the pseudo labels optimized
by the UIS technique have 2.19% and 1.53% improvement
in F1-score in the two datasets compared to the MR , which
indicates that the UIS technique is effective in optimizing
the rough cloud mask. The examples of MR optimized based
on the UIS technique are shown in Fig. 12. In comparison
to MR , it can be seen that the pixel-level pseudo labels
exhibit greater precision at the boundaries of clouds, reducing
the misdetection and the recognition of leakage within the
cloud interior; therefore, the pixel-level pseudo labels acquired
through the UIS technique are appropriate for fine-tuning the

Fig. 13. (a) Examples of the image blocks not selected as a pseudo label.
(b) Example of the image block with cloud and snow and its pixel-level pseudo
label.

pretrained model, in order to attain satisfactory cloud detection
results in DT .

B. Generalization Ability Analysis for the Transferred Models

To access the effectiveness of the TransMCD method in
enhancing the generalization of the models across various
regions, we deliberately partitioned the training data and val-
idation data. For the GF1-MS images, 23 images from Hubei
province were used to train the fully supervised model, while
ten images from other provinces were used as the validation
data. For the GF2-MS images, 16 images from Hubei province
were used to train the fully supervised model, while 13 images
from Jilin and Hainan provinces were used as the validation
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Fig. 14. Examples of the cloud detection results for the GF1-MS images obtained using the three different modes of the RegNetY model. (a) Thin cloud
area. (b) Snow/ice area.

data. The distribution of the data is shown in Fig. 7, and the
quantitative evaluation of the RegNetY model is provided in
Table X.

The quantitative evaluation results show that the ML-FS
model is incapable of acquiring information about the region
where the validation data are situated when the training data
and validation data are from separate regions. The TransMCD
model has the capability to extract specific information from
the validation region, enabling it to achieve a higher F1-score
in the region transferability experiment. Overall, our argument
is that the TransMCD method can extract valuable information
from unlabeled images, thereby enhancing the transferability
of the model.

C. Time Efficiency of the Constructed Dataset

In constructing datasets for cloud detection, the manual
annotation of samples often consumes a large amount of
time. The proposed framework for automatically constructing
datasets for cloud detection is, however, able to generate
image blocks for model training within only a few minutes.
As shown in Table XI, the process of manually labeling
a 4548 × 4544 image and dividing it into blocks with a
size of 256 × 256, which includes 175 cloud blocks and
149 cloud-free blocks, takes approximately 10 h to obtain a
well-annotated image. In contrast, the proposed framework can
efficiently acquire pixel-level pseudo labels from an unlabeled
image in a time span of only 9 min. The proposed framework,
in spite of obtaining a smaller number of samples from a
single image compared to manual labeling, has the capability
to annotate any image and automatically extract samples
with high confidence. The proposed framework, therefore,
has the capability to acquire an ample amount of training
samples in a short period of time when a large number of

images are available. It is apparent that the framework for
automatically constructing datasets in the TransMCD method
has the potential to significantly reduce the time required to
construct a pseudo-label dataset from unlabeled images.

D. Limitations

The TransMCD method proposed in this article can auto-
matically construct the DT pseudo-label dataset for fine-tuning
the model. This enables the fine-tuned model to achieve a
similar effect to the fully supervised model in DT . The deep
learning model, however, learns the features in the dataset.
When the dataset lacks samples of snow and thin clouds,
it cannot provide important prior information for the model to
accurately detect thin clouds and distinguish between clouds
and snow in the imagery. The TransMCD method uses the
model generalization and cloud spectral features to construct
a pseudo-label dataset; however, the TransMCD method con-
structs high-confidence cloud pseudo labels based on the
MH . From the quantitative evaluation results in Table VII,
we can see that the MH has a lot of leakage recognition,
and its recall is only 0.4225. Many image blocks containing
thin cloud features will not be selected as pseudo labels,
as the sample shown in Fig. 13(a). The pseudo-labeled dataset
constructed in this way often lack image blocks containing
thin cloud features, which results in the model obtained by
the TransMCD method cannot accurately identify thin clouds
in the image, as shown in Fig. 14(a), and the TransMCD
method constructed pixel-level pseudo labels based on MR

obtained by the pretrained model. As can be seen in Fig. 13(b),
the highlighted surfaces, such as snow, around the cloud are
labeled as cloud in the pseudo labels due to the misdetection
occurs in the pretrained model; therefore, the TransMCD
method is unable to accurately identify snow in the images,
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as shown in Fig. 14(b). In summary, we believe that the
TransMCD method is suitable for cloud detection in images
without snow or large areas of thin clouds.

It is, however, not possible to accurately identify thin clouds
and snow in the images using only the cloud spectral fea-
tures. The capability of the TransMCD model to differentiate
between clouds and snow is, therefore, significantly influenced
by the generalization of the pretrained model. Although the
TransMCD model shows some improvement in identifying
thin clouds and reducing the misdetection of snow, compared
to the pretrained model, its effectiveness is not as high as that
of the ML-FS model. To overcome this shortcoming, we will
consider using low-cost manually annotated block-level labels
in the target domain that contain information about snow and
thin clouds, to fine-tune the pretrained model, and achieve
accurate detection of snow and thin clouds.

Because of the significant disparities in the generalization
ability of various deep learning models, this article does not
test the effectiveness of the TransMCD method in many state-
of-the-art models. In future work, we plan to evaluate the
effectiveness of the TransMCD method across a broader range
of models and present a deep learning model tailored for
multisensor cloud detection tasks. The model in this article
uses initial weights from the ImageNet dataset, which are
suitable for RGB images. In this article, we do not investigate
the impact of diverse initial weights on the final model,
as the two-stage training approach employed in the TransMCD
method reduces the impact of the initial weights on the final
model. In the future, we will use initial weights that are more
suitable for remote sensing images, such as BigEarthNet [63],
to assess the impact of initial weights on the TransMCD
method.

VI. CONCLUSION

In this article, we have proposed the TransMCD method,
which is a weakly supervised learning method for transferring
deep models to detect clouds in multisensor images. The
TransMCD method pretrains a deep learning model using
an existing cloud detection dataset and transfers the models
to multisensor images, particularly high-resolution images
that do not have cloud labels. In addition, a framework is
proposed for automatically constructing a cloud detection
dataset by combining the physical features of clouds and
the model generalization. The framework for constructing
pseudo labels uses the model generalization to adaptively
determine the spectral threshold for cloud segmentation to
obtain high-quality block-level pseudo labels. This eliminates
the need for manual adjustment of the spectral threshold
in multisensor images and leverages the UIS technology to
generate pixel-level pseudo labels, which significantly reduces
the burden of manually annotating cloud samples. The results
of the transfer experiment conducted on the GF1MS-WHU,
GF2MS-WHU, and WHUS2-CD datasets, using four seg-
mentation models, indicated that the models transferred by
TransMCD demonstrated a 1.23%–9.63% improvement in
F1-score for cloud detection on target domain images, com-
pared to the pretrained models. We argue that the TransMCD

method has good potential in cloud detection for multisen-
sor images and can be used to integrate the state-of-the-art
segmentation models. Meanwhile, the TransMCD method
still exhibits certain limitations when compared to the fully
supervised method using well-annotated labels. For instance,
the proposed method lacks the ability to distinguish between
clouds and snow, and it also struggles to achieve accurate
segmentation of thin clouds. In our future work, we will
consider fusing geometric and textural features of clouds in
order to distinguish noncloud objects that have similar spectral
features to clouds. In addition, we will incorporate low-cost
manually annotated block-level labels with thin cloud informa-
tion into the proposed method to achieve accurate thin cloud
detection.
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