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How will ai transform urban observing,
sensing, imaging, and mapping?

Check for updates
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Advances in artificial intelligence (AI) and Earth observation (EO) have transformed urban studies. This
paper provides a commentary on how theAI-EO integration offers advancements in urban studies and
applications.Weconclude that AIwill provide adeeper interpretation andautonomous identification of
urban issues and the creation of customized urban designs. Open issues remain, especially in
integrating diverse geospatial big data, data security, and developing a general analytical framework.

The need for monitoring and managing urban areas is amplified by the
concern over global climate change. Cities are among the most complex of
human settlements, and urban areas may be more vulnerable than rural
settlements to the impacts of global climate change1. Most concerns,
including health, water and infrastructure, severe weather events, energy
requirements, urban metabolism, sea level rise, economic competitiveness,
opportunities and risks, social and political structures, and the United
Nation’s Sustainable Development Goals (SDGs) can be better understood
with Earth observation (EO) technology. In fact, EO techniques, in con-
junction with in situ data collection, have been used to observe, monitor,
measure, and model many of the components that comprise natural and
human ecosystem cycles for decades2.

Since the beginning of the 21st century, we have witnessed a great
increase in EO-related research and development, technology transfer, and
engineering activities worldwide. Commercial satellites acquire imagery at
spatial resolutions previously only possible to aerial, with additional
advantages for producing stereo image pairs conveniently for three-
dimensional (3D) mapping3. Hyperspectral imaging affords the potential
for detailed identification of materials and better estimates of their abun-
dance on the Earth’s surface, while light detection and ranging (LiDAR)
technology provides high-accuracy height and other geometric information
for urban structures and vegetation. Radar technology has been re-invented
since the 1990s due greatly to the increase of spaceborne radar programs3

and its images emphasize humidity, relief, and morphological structure of

the observed terrain. Recently, nighttime light imagery and street-level
imagery has emerged as additional important data sources in urban areas,
particularly from a human perspective4. Moreover, many government
agencies and companies have collected GIS (geographic information sys-
tem) data sets along with remote sensing imagery for civic and environ-
mental applications, such as Google Earth and Virtual Globe. These virtual
“worlds”, in conjunction with GPS, social media, and modern tele-
communication technologies, have sparked much interest in the public for
urban observing, sensing, imaging, andmapping. However, a great deal has
yet to be learnt about the integrated use of these systems in understanding
urban issues5. At the meantime, artificial intelligence (AI) is rapidly chan-
ging the field of remote sensing and mapping6 and enables research and
applicationsonpreviously inconceivable topics andatunprecedented scales.
AI techniques, such as deep learning, have been proven to be both a science
breakthrough and a powerful technical toolbox inmany fields. Early success
in EO digital image processing has been demonstrated via image pre-pro-
cessing, classification, target recognition, and 3D reconstruction7, but it
remains a challenge to expand AI application in EO due largely to the
complexity of urban landscapes and the existence of mixed pixels in urban
areas8.

The history of EO technology has revealed that three stages can be
discerned in image processing, analysis, understanding, and pattern
recognition. The first stage, from the 1970s to the beginning of the
21st century, focused on addressing the overall question of “What Is
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Within a Pixel?”9. This stage was characterized by pixel-based and sub-
pixel analysis and utilizes essentially the tone and color of pixels. The
second stage focused on “larger than one pixel” representations and
spanned over the first fifteen years of this century. This stage was
characterized by object-based image analysis, emphasizing the impor-
tance of image texture in image analysis and pattern recognition. The
third stage, from circa 2015 to the present, focused on human recogni-
tion, and was characterized by the ubiquitous use of AI techniques to
mimic how human beings extract information at multiple spatial scales
from an image. The human brain is organized in a deep architecture, and
its perception and recognition are manifested at multiple levels of
abstraction with non-linearity and feedback at different stages. Emer-
ging trends in AI tend to respond to the question of how human beings
perceive, recognize, and understand theworld, instead of amachine view
of the world through “data grids”. AI uses EO data grids as building
blocks tomake sense, to facilitate, or to revolutionize, our understanding
of the world.

In this paper, we will provide a review and synthesis on how AI
reshapes the research paradigm of EO. In addition to assessing progress and
problems in the frontiers of AI in urban studies, we are especially interested
in new research directions, emerging trends, and advances across multiple
sub-fields and beyond.We look at how EO andAI technologies integrate to
offer the profound potential for advancements in every aspect of urban
studies, including observation, sensing, imaging, mapping, and interpreta-
tion of urban challenges (Fig. 1).

AI in earth observations: progress and problems
Theoretical basis of AI in urban systems
AI can assist in addressing many issues in urban systems by detailed and
extensive sensing of urban environments10. Deep learning11 is a branch of
machine learning that utilizes deep neural networks to learn and represent
complex patterns in data, which can be employed for tasks such as fine
object recognition. Natural language processing12 focuses on how compu-
ters understand and process human language, which can be applied to
analyze and extract insights from urban-related textual data, such as social
media data. Reinforcement learning13 is a learning paradigm that aims to
train intelligent agents by interactingwith the environment to learn optimal
action strategies, which can be utilized to optimize decision-making in such
areas as urban transportation systems and energy management. These
theoretical bases enable the use of AI technology to analyze and address
problems inurban research, providingdeeper insights andbetter knowledge
to support decision-making.

The power of AI in urban research lies in its ability to process multiple
types of data, analyze complex patterns, and make informed predictions,
which is crucial for understanding complex urban systems. The application
of AI methods and techniques usually considers many factors, including
research tasks (e.g., image classification, object detection, etc.), the modality
of data (e.g., optical, radar images, etc.), the hardware (e.g., graphics pro-
cessingunit) andplatform(e.g., local, distributed, or cloud computing)14, the
selection of models, the construction of networks, and the validation of
results. The joint use of multimodal data should be carefully considered in
the construction of networks. The criteria formodel selection depend on the
specific task, data, and the desired output. The construction of networks is
not yet unified and explainable. Therefore, a general framework and
guidelines for selecting models, constructing networks, and validating
results are needed to fully leverage the potential of AI in urban studies.

Digital image processing
Indigital imageprocessing,ConvolutionalNeuralNetwork (CNN) iswidely
used due to its powerful ability of local feature extraction15. For sequential or
time-series data, Recurrent Neural Network (RNN) is popular16. Recently, a
newAImodel, transformer, has achieved great advances in natural language
processing, and has been successfully transferred into the image processing
field. Compared to CNN and RNN, the transformer entirely consists of
attention mechanisms and can model long-range dependency between
input and output at much lower training cost17. Fueled by the rapid devel-
opment of hardware, big data, and AI techniques, foundationmodels based
on transformers have been successfully proposed for general purposes and
can be readily applied to various downstream tasks18. In the field of remote
sensing, foundation models have increasingly received wide concerns, e.g.,
Prithvi19 and RemoteCLIP20. These foundation models point out a pro-
mising direction for dealing with multi-modal data and general tasks. This
can be outlined in a general framework with three components: model,
input, and output (Fig. 2).

Model. AI models often operate as a “black box”21, neglecting the
underlying physical mechanisms. To address this issue, we propose a
general AI framework, which consists of three parts: the encoder for
feature extraction; the feature fusion module for the fusion of diverse
features; and the decoder for the reconstruction of output features. The
key innovation lies in the utilization of prior knowledge and the inte-
gration of major cutting-edge AI models, such as CNN, transformer,
RNN, graph neural network (GNN), and generative adversarial network
(GAN). Different AI models can serve as encoders or decoders based on

Fig. 1 | Topics covered in this paper and the logic for their arrangement (image created by the authors).
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their strengths in feature representation. Prior knowledge can be inte-
grated at different stages. At the input stage, it can enrich and integrate
prominent features, reducing redundancy, such as remotely sensed
spectral indices. During themodeling, prior knowledge can be accounted
for in network weights throughmodel pre-training or fine-tuning. At the
output stage, it can guide the learning process and provide more reliable
outputs, e.g., by the addition of spatial-temporal weighted terms. This
knowledge-driven approach enhances the model interpretability and
generalization and compensates for limited training data.

Input data. These EO data are characterized by diverse spectral, spatial,
and temporal resolutions and broad spatial coverage, enabling long-term
urban monitoring. Within the AI framework, prior knowledge comple-
ments raw data, especially when the available input data is limited. The
type of prior knowledge to be incorporated depends mainly on research
objectives, geospatial relationships, urban attributes, and temporal pat-
terns (see Fig. 2).

Output data. The output is application-specific, ranging from image pre-
processing and interpretation to parameter estimation. Utilizing an
appropriate model informed by practical urban knowledge yields more
accurate and comprehensive insights, contributing to more effective
urban sensing and imaging.

Urban mapping
AI canhandle different types of data, including text, audio, image, and video,
and can integrate them to produce more accurate results than traditional
methods. It enhances data interpretation capabilities and helps make
informed decisions in various fields. It has revolutionized the field of urban
mapping by processing and analyzing various types of data. In this section,
wewill discuss three applications ofAI in urbanmapping: land use and land
cover (LULC) mapping, building detection, and road extraction.

LULC mapping has long been a hot topic and is evolving with deep
learning22. The exceptional performance of deep learning in LULCmapping
is due to several factors. First, deep learning eliminates the need for manual
feature engineering due to the inherent ability of themodels to learn directly
from data. Second, deep learning enhances the ease of incorporating het-
erogeneous multi-modal data into the mapping process. Third, deep
learning can generate diverse output types, such as point-level categories,
segmented objects, and bounding boxes23. Nevertheless, deep learning is
data-driven and relies heavily on labeled data. In addition, although diverse
LULC products have been developed for local or global regions, there exist
considerable uncertainties and inconsistencies. Urban green spaces (UGS),
as a special type of land cover, play an important role in understanding
urban ecosystems, climate, environment, public health concerns, and the
SDGs at various spatial scales. Mapping of UGS with remote sensing is
challenging due to the existence of mixed pixels and the cost and time of

Fig. 2 | The general AI framework in Earth observations (image created by the authors).
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collecting quality training data. CNNand other deep learningmethods have
been employed for UGS mapping and found them effective24.

Buildingdetection is oneof themost profoundly advanced areas ofEO-
based deep learning.Historically, building feature-basedmethods have been
developed to advance automated building detection25, but they rely on
domain-specific knowledge tomanually design building- related features to
be detected andmapped. Deep learning, trained using existing open-source
databases obtained by citizen science, have become a mainstream for
building detection26. For instance, Microsoft has released a global building
footprints dataset generated by deep learning networks, which was almost
impossible to achieve in the past, yet the completeness of this dataset still
needs attention.

Similarly, AI hasmade it possible for automatic extractionof roads. For
example, the foundation model has been utilized to extract road networks
by employing autoencoders and contrastive learning for self-supervised
training on large-scale unlabeled remote sensing images27. Parameter-
efficient fine-tuning methods were used to apply these general foundation
models for road extraction tasks. Because self-supervised training learns the
distribution of vast amounts of data, the model’s feature representation
capabilities are significantly enhanced, thereby improving the performance
of road extraction. Cross-modal learning has also been applied to road
extraction tasks28. For instance, GPS data is used to address the issue of
insufficient road data labels to some extent. AImethods are still constrained
in road detection and mapping in several aspects. First, there is a lack of an
accurate and diverse training dataset for global-scale road mapping29. Sec-
ond, the generalization ability of AI models remains limited for global
applications. Third, the lack of inductive reasoning ability for AI models
leads to disconnected roads, which may lead to inaccurate conclusions in
roadnetwork-based urban studies. AImethods focusmainly on recognizing
individual pixels as roads, rather than inferring road connectivity according
to the cognitive process applied by human beings30.

Urban observing and sensing
Following thediscussionon the threewidest applications in urbanmapping,
where optical remote sensing methods are primarily utilized, this chapter
focuses the discussion on urban observation and sensing with other sensing
systems and platforms, such as LiDAR, Synthetic Aperture Radar (SAR),
street-level imagery, as well as people as virtual sensors.

LiDAR technology offers exceptional 3D data acquisition capabilities
for urban landscapes, structures and infrastructure, as well as monitoring
changesover time. Small-footprint airborneLiDARdelivershigh-resolution
topographic data, excelling at generating detailed 3D urban environment
models31. Integrating AI with LiDAR data processing enables sophisticated
classification and analysis of urban features. For instance, AImodels trained
on CNNs have improved interpreting andmerging information from these
diverse sensor modalities, thereby enhancing point semantic labeling and
classification accuracy32. Nonetheless, the fusion of LiDAR with other
sensors to improve information retrieval with the existence of occlusion
from LiDAR viewing geometry poses significant challenges for urban
applications. To address these challenges, cross-modal learning strategies
leverage LiDAR data combined with visual and thermal imagery to com-
pensate for areas where LiDAR data is incomplete or obstructed, thereby
enriching the dataset33. In addition, self-supervised learning models have
been utilized, autonomously predictingmissing or noisy data sections based
on patterns identified in complete and clean sections34. This approach
enhances data quality and facilitates learning from the intrinsic structure of
LiDAR data without relying on manually labeled examples, which is par-
ticularly beneficial for managing large datasets and standardizing data
quality across different systems.

SAR, featuring all-weather capability, rapid revisit, and multi-angle
observations, is an importantEOtechnology. Increasing accessibility of SAR
has significantly enabled the application of AI for urban sensing and
mapping35. Additionally, interferometric SAR (InSAR) techniques are used
to process and analyze multitemporal SAR, enabling accurate measure-
ments of urban surface and infrastructure deformation. Compared to

optical images, SARexhibits distinct characteristics, including speckle noise,
multipath scattering, and geometrical distortions, which negatively impact
their interpretation. These issues also pose challenges for AI-based analysis
of SAR images in conjunction with optical ones.

The potential of street-level imagery has been advanced with AI for
data mining and knowledge discovery10. For example, it is possible to
evaluate the conditions of urban infrastructure through semantic segmen-
tation methodologies36. Deeper insights, including safety, architectural age
and style, and the urban socio-economic environment are also available
throughAI37. Despite these advancements, challenges remain, such as in the
integration of street-level with satellite/airborne data. Satellite/airborne
sensing provides a large-scale perspective but is limited to top-down or
oblique observations, while street-level imagery offers a ground-based
observation from a human’s perspective.

The aforementionedEOtechnologies have traditionally been applied to
study static objects such as LULC. Recently, massive geo-tagged data on
dynamic objects (e.g., human behaviors) have been generated by physical
and people sensors (people as virtual sensors). These data, such as GPS
trajectories, surveillance data, urban environment data (e.g., temperature
and air quality data) and human-generated data, are mostly associated with
geo-locations, capturing urban dynamics (e.g., human movements, urban
events and processes) from different angles. They provide multi-
dimensional EO data in a granular manner, which have greatly catalyzed
the applicationofAI techniques tourban sensing38. For instance,AIhas been
widely applied to GPS trajectories and urban environment data, which has
significantly improved human movement prediction39 and urban environ-
ment change forecasting40. Nevertheless, challenges such as fusing the geo-
tagged datawith the EOdata for effectiveAImodeling remained due to their
spatiotemporal scale differences and the qualities of measurement.

Human-generated data can be categorized into passive sensing (e.g.,
data generated from social media, location-based services, and mobile
devices) and active sensing (e.g., Public Participation Geographic Infor-
mation Systems (PPGIS), Volunteered Geographic Information Systems
(VGIS), and surveys). These data sources offer diverse insights into human
activities and behaviors, as well as other human factors related to social
sustainability, such as environmental experiences, perceptions, and needs.
Social media data, for instance, can be used to analyze social phenomena
such as segregation, while PPGIS data can help identify community needs
and preferences regarding urban planning.

Emerging trends
To explore research directions and emerging trends, new and directed
researchquestions should be considered.Here,wewill focus on twoof them:
How will AI transform urban observing, sensing, imaging, and mapping?
How can urban landscapes, phenomena, and events be better perceived and
recognized with AI models using EO and geospatial big data?

Multimodal data fusion and physical model integration
There is a growing interest in the remote sensing community for multi-
modal data, acquired fromavariety ofplatforms, including satellites, aircraft,
unmanned aerial vehicles, autonomous vehicles, ground sensor networks,
social media, and by different sensors, such as optical, radar, LiDAR, and
human sensors (individuals as virtual sensors). Considering the differences
in imaging mechanisms, the fusion of data from diverse modalities can be
conducted at the feature level anddecision level. Particularly, themultimodal
data fusion strategy must be carefully designed to ensure high fidelity in
feature representation and enhanced accuracy in data interpretation.

Current challenges mainly include the following. The first is the
differences in data structure. The second is the imbalanced number of
labeled samples across modalities, which can lead to a significant gap in
performance whenmodels are individually trained. The third is the need
for hundreds of millions of labeled samples, which are costly and often
unavailable publicly. Deep learning models appear well suited to
accommodate different data sources, due largely to the fact that they can
directly learn the nonlinear relationship between input and output
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representations and do not need any extra steps, e.g., hand-crafted
feature extraction in traditional methods. Developing a unified foun-
dation model for complex urban areas is crucial for building a unified
urban mapping framework and promoting urban applications. To this
end, multi-modal data can be incorporated together to enhance the
sensing of urban areas as well as human activities. Moreover, prior
knowledge and the physical rules of urban areas can be merged into the
foundation model to construct knowledge-driven or physically con-
strained models for promoting the comprehensive sensing of cities.

A promising research direction is the development of diverse learning
schemes, e.g., self- supervised learning and cross-modal learning. Self-
supervised learning dealswith unlabeled data andunderpins deep learning’s
advances in large natural language models trained on web-scale corpora of
unlabeled text, such as Generative Pre-trained Transformer (GPT)41. In
computer vision, self-supervised learning can match and, in some cases,
surpass models trained on labeled data42, even on highly competitive
benchmarks like ImageNet. How to leverage these recent advances in theAI
field to facilitate the transformation of the remote sensingfieldwill become a
hot spot in the coming years. Cross-modal learning allows learning in any
individual sensory modality to be enhanced with information from other
modalities. The current AI systems have taken only tiny steps in the cross-
modal learning direction. We can expect that more models will emerge as
backbone methods in the remote sensing field.

Extending the capacity of urban observation and analysis
AI can construct mathematical models between big data and labels without
human intervention. This section selected three cases, i.e., building detection,
road detection, and human behaviors analysis, to discuss the influence of AI,
considering thecomplexityofurbanobservationandanalysis and thediversity
of urban elements (visible objects or invisible interactions). Moreover, these
cases have long been studied in remote sensing and can serve as demos.

AI gradually extends the boundary of building detection to more fine-
grained and complex tasks, e.g., roof type identification, building function
classification, and 3D building reconstruction. Currently, the accuracy of
building edges is relatively low and building vectorization needs dedicated
post-processing to replace manual work. Moreover, the reconstruction of
building roofs and walls at city-to-regional scales is still underexplored.
Many impervious area data products at 10–30m resolution can serve as a
spatial constraint to speed up large area building detection. Furthermore,
geospatial big data, such as crowdsourced buildings from Open Street Map
(OSM), should be fully explored, since they provide the diversity and
representativeness of training data, but their qualitymust be assessed. OSM
canbe a viable alternative to official data sources even in data-scarce regions,
because AImodels can learn correct knowledge from high-quality data and
apply it to correct low-quality data by using noisy label learning
techniques43. The inclusion of data-scarce regions with or without crowd-
sourced labels could be useful for improving the generalization ability of AI
models, facilitating the construction of large models18,44.

With respect to road extraction, a promising direction is to build a
global-scale road training dataset using existing open-source big data.
Besides, it will be beneficial to develop a cyclic AI framework, which can
continually adjust the network parameters with the feed of new input data
and effectively adapt the trained model to new data distribution. A data-
driven and knowledge- guided AI framework would bemore desirable, due
to the combination of the advantages of visual perception and human
cognition. Remote sensing imagery reflects physical processes, and physics-
based models can provide important priori knowledge for AI models.

Furthermore, street-level imagery, nighttime light, human sensors, and
geotagged data can provide a wide range of information about urban forms
and underlying socio-economic dynamics. AI shows a promising potential
in integrating these multi-source data and a few new directions can be
identified.Thefirst one is about effective data integration.A standardizedAI
model handling different datasets in terms of scale, format, and resolution
would be key for improving the training performance. The second one is
about down-to-earth AI model development.

Application-specific AI models would be more essential for urban
sensing and intelligence with minimal fine-turning. The third one is about
high-resolutionmapupdating in aneffectiveway.Thefinal one relates to the
tradeoff between data privacy and AI development. Allowing AI to access
human behavior related data asmuch as possible should be consideredwith
security issues in mind.

Three-dimensional semantic reconstruction of cities
The 3D semantic reconstruction of cities refers to accurately reconstructing
the 3D scene geometry and simultaneously interpreting the scene to
semantic object classes, such as individual buildings, trees, and roads.
Figure 3 shows an example of semantic reconstruction. This information is
the bedrock of digital infrastructures that fuel contemporary EO, digital
twin, and smart city applications45.

Formany years, semantic 3Dmodels have been created throughmanual
or semi-automated approaches46. Today, 3D semantic reconstruction has
entered an AI era. High accuracy and full automation of AI methods mean
better estimates of human settlements and stronger spatio-temporal coverage
that were previously not possible. For example, real-time semantic segmen-
tation and depth estimation fromvideo feeds are becoming basic components
inmajor driving-assistant systems in autonomous vehicles and robots. In EO,
the increased automation and accuracy mean the ability to interpret large
volumes of data across different scales. Thus, contemporary 3D semantic
reconstruction aims to break the data scale boundaries, producing landscape
3D semanticmodels at an extremely high spatial resolution (Fig. 3 depicts the
desired outcome). In addition to semantics on the physical properties of the
urban objects, those related to higher-level human perception of the scene can
be very valuable. Examples of such high-level “semantics” include human
understanding of building and community functions of a city, urban forms
and planning47. However, studies on such topics with AI are still limited,
which, bymaking use of current 3D semantic reconstructionmethods, can be
further sought using advanced co-learning of visual semantics and large lan-
guage models48,49 and multimodal data fusion approaches (Section "Multi-
modal data fusion and physical model integration").

This field suffers from common AI problems. Good AI models require
high-quality training data in considerable quantities. For example,most of the
known public datasets focus on developed countries, which may highly likely
lead AI models to generate results that may not be desirable in less developed
regions. Future efforts can be put into unsupervised/weakly supervised
training (for noisy or sparse data)50 and domain adaptation51 to alleviate the
absence of sufficient training data. Further, there are some technical issues in
3D reconstruction. For instance, the construction of networks for multi-view
images or LiDARneeds to consider the imaging geometrymodel to obtain the
spatial location of each pixel, which ismore complex than single-view images.
Besides, the texture mapping and simulation for different objects require
sophisticated computation and optimal parameter searching.

Real-time sensing, imaging, and processing
Real-time sensing, imaging, and processing are crucial for detecting,
assessing, andmanaging various types of urban risks, including both natural
and anthropogenic risks. Figure 4 illustrates GeoAI for real-time urban
sensing, imaging, and processing. Satellite imagery provides abundant data
for urban monitoring, and the incorporation of multiple satellites and the
introduction of video satellites enables real-time observation52. IoT-
integrated sensors and the advent of the Fifth-Generation technology
facilitate faster data collectionand transmission, bolstering real-time sensing
and imaging. While advanced AI models offer robust real-time data
handling capabilities, improving efficiency in tasks like traffic flow predic-
tion and flood forecasting, it is essential to recognize the complexities
involved. These models can effectively integrate diverse data from satellites,
unmanned aerial vehicles, ground sensors, social media, and other plat-
forms, providing a comprehensive and real-time view of urban environ-
ments and effective urban management, especially during emergencies and
disasters. It is crucial to ensure that AI serves as a tool guided by human
decision-makers, maintaining transparency and accountability. Integrating
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Fig. 3 | An example of semantic reconstruction of cities (image created by the authors).

Fig. 4 | GeoAI for real-time urban sensing, imaging, and processing (image created by the authors).
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human judgment is necessary to address complex urban challenges, and
considerations of data access, ethics, and standardization must be
prioritized.

Security concerns
Despite the great success of AI in urban environmental science, the chal-
lenges posed by AI security issues should not be neglected53. Due to the
intrinsic characteristics of machine learning algorithms, AI models usually
exhibit high vulnerability to adversarial attacks and backdoor attacks. These
attacks can seriously threaten the reliability of Internet Of Thing devices
(e.g., drones) and intelligent applications (e.g., autonomous driving) in
smart city systems, simply by imperceptible adversarial perturbations or
backdoor triggers. Besides, as AI systems gather and process an ever-
expanding volume of data, protecting the data privacy of individual users
within smart city systems becomes a pressing concern54. There is an urgent
demand to establish a collaborative framework that not only enhances the
protection of personal data but also preserves the autonomy of data pro-
viders, enabling them to actively contribute to the collective intelligence of
AI systems. Furthermore, uncertainty exists throughout the entire lifecycle
of urban remote sensing. This uncertainty constantly propagates and
accumulates, thereby affecting the accuracy and reliability of the ultimate
output generated by the deployed AI model.

These challenges reveal the imperative for the advancement of secure
AI models in EO. Specifically, advanced techniques should be developed to
improve the intrinsic resistibility against adversarial/backdoor attacks,while
simultaneously identifying and mitigating potential threats posed by
adversaries within the urban systems. Data privacy strategies such as fed-
erated learning should be embraced to decentralize the learning process,
enabling AI models to be trained across distributed data sources without
compromising the confidentiality of sensitive information held by indivi-
dual urban data providers. Advanced algorithms should be designed to
further decrease uncertainty, ensuring that errors and risks remain highly
controllable to achieve a truly trustworthy AI system in urban environ-
ments.Webelieve thatAI securitywill play an increasingly important role in
shaping the future of digital, smart, and sustainable cities.

Conclusions
Over the past several decades, the field of EO has been developing rapidly
with the advent of new sensors and algorithms, the reinvention of “old”
technology, and more computing power such as AI, and is gaining great
interest in academia, governments, industries, and the public. This paper
provides themost up-to-date knowledge onAI for urban areas, what trends
are emerging and how AI technology can be applied to provide practical
solutions for a sustainable urban future.

We envision three trends in the future research of AI for urban
observation, imaging, and analysis. First, AI will provide a deeper andmore
comprehensible interpretation of the fundamental principles underlying
urban issues. Multi-modal data can expand urban sensing, imaging, and
mapping capabilities, and previously obscure information can be rendered
visible. The incorporation of interpretable AI techniques can facilitate
effective analysis in addressing urban challenges and enable a better
understanding of the disparities between AI and human policymaking.
Second,AI provides a diverse range of precisemethodologies to enhance the
field of urban studies. AI-generated content empowers researchers to gen-
erate practical solutions tailored to address specific challenges in various
scenarios. For instance, generative AI may have the potential to act as an
agent to simulate and forecast complex urban dynamics, offering a granular
understanding of how cities evolve over time under various scenarios. This
technologywill further facilitate the creation of customized urban designs in
alignment with the goals of sustainable urban development established by
governments and the United Nations. By leveraging AI, a range of alter-
native approaches to urban planning and design processes can be intro-
duced, resulting in more effective and targeted solutions to the challenges
faced in current urban development.
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