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A B S T R A C T

Floods are among the most devastating natural disasters, posing significant risks to life, property, and infra-
structure globally. Earth observation satellites provide data for continuous and extensive flood monitoring, yet
limitations exist in the spatial completeness of monitoring using optical images due to cloud cover. Recent studies
have developed gap-filling methods for reconstructing cloud-covered areas in water maps. However, these
methods are not tailored for and validated in cloudy and rainy flooding scenarios with rapid water extent
changes and limited clear-sky observations, leaving room for further improvements. This study investigated and
developed a novel reconstruction method for time series flood extent mapping, supporting spatially seamless
monitoring of flood extents. The proposed method first identified surface water from time series images using a
fine-tuned large foundation model. Then, the cloud-covered areas in the water maps were reconstructed,
adhering to the introduced submaximal stability assumption, on the basis of the prior water occurrence data in
the Global Surface Water dataset. The reconstructed time series water maps were refined through spatiotemporal
Markov random field modeling for the final delineation of flooding areas. The effectiveness of the proposed
method was evaluated with Harmonized Landsat and Sentinel-2 datasets under varying cloud cover conditions,
enabling seamless flood mapping at 2–3-day frequency and 30 m resolution. Experiments at four global sites
confirmed the superiority of the proposed method. It achieved higher reconstruction accuracy with average F1-
scores of 0.931 during floods and 0.903 before/after floods, outperforming the typical gap-filling method with
average F1-scores of 0.871 and 0.772, respectively. Additionally, the maximum flood extent maps and flood
duration maps, which were composed on the basis of the reconstructed water maps, were more accurate than
those using the original cloud-contaminated water maps. The benefits of synthetic aperture radar images (e.g.,
Sentinel-1) for enhancing flood mapping under cloud cover conditions were also discussed. The method proposed
in this paper provided an effective way for flood monitoring in cloudy and rainy scenarios, supporting emergency
response and disaster management. The code and datasets used in this study have been made available online
(https://github.com/dr-lizhiwei/SeamlessFloodMapper).

1. Introduction

As one of the most devastating natural disasters, floods exacerbated
by global climate change pose significant risks to life, property, and
infrastructure globally (Rentschler et al., 2022; IPCC, 2023). Recent
estimates suggest that the proportion of the global population affected
by floods has increased by 20–24 % since the turn of the century, with
projections indicating that up to 758 million people will be exposed to a
100-year flood event by 2030 (Tellman et al., 2021). Enhanced flood

monitoring techniques, specifically focusing on near-real-time flood
extent mapping, are critically important for effective emergency
response and flood disaster management, to deal with the growing
threat of flood disasters efficiently.

Satellite remote sensing offers a cost-effective means for continuous
and extensive flood monitoring. Optical and synthetic aperture radar
(SAR) images, the primary data sources in satellite-based flood moni-
toring, serve distinct roles given their unique characteristics. On the one
hand, SAR data have generally been widely used in flood monitoring
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because of their independence from weather conditions and time of
imaging. However, because of the limitations of SAR imaging mecha-
nisms, flood monitoring with SAR data in urban areas is relatively
constrained (Notti et al., 2018; Liang and Liu, 2020; McCormack et al.,
2022). Additionally, the publicly available sources of SAR data are
relatively limited, and the use of single-source SAR data for flood
monitoring is restricted by the revisit intervals of satellites. For example,
the combined Sentinel-1A/1B satellites provide SAR data with a tem-
poral resolution of 6 days, which makes capturing short-term flood
events, lasting less than 6 days, challenging. Such a situation became
even worse due to the operational failure of Sentinel-1B in December
2021, which led to the temporal resolution of Sentinel-1 being reduced
to 12 days. On the other hand, numerous optical satellites, such as
Landsat and Sentinel-2, can provide open-access images for surface in-
formation extraction and flood mapping. However, they are inevitably
affected by cloud cover, leading to the missing ground surface infor-
mation in images and reducing the frequency of valid observations
(Yang et al., 2020; Zeng et al., 2020; Goffi et al., 2020; Li et al., 2022c;
Shastry et al., 2023). In consideration of the revisit cycles of satellites
and the duration of floods with their respective intervals, the frequency
of satellite observation is crucial for flood monitoring (Tulbure et al.,
2022).

Flood extent mapping with satellite imagery: Mapping the extent
of flood inundated areas using remotely sensed satellite imagery relies
on water extraction. Existing water extraction and flood extent mapping
methods primarily consist of water index- and machine learning-based
methods. Water indexes, such as the normalized difference water
index (NDWI) (McFeeters, 1996), modified NDWI (Xu, 2005), and
automated water extraction index (Feyisa et al., 2014), are widely used
to separate surface water from other ground objects because they are
easy to use and computationally efficient. Traditional machine learning
methods, such as support vector machines (Li and Narayanan, 2003; Sun
et al., 2014, 2015) and random forest (Deng et al., 2017; Wang et al.,
2018), are more effective in water extraction than index-based methods.
However, they require manual extraction of spectral and spatial fea-
tures, impacting prediction accuracy. The recent introduction of deep
learning techniques, such as convolutional neural networks (CNN), a
subset of machine learning methods, has revolutionized this field and
significantly enhanced the accuracy of water extraction owing to their
strong feature representation ability (Wang et al., 2020; Konapala et al.,
2021; Bentivoglio et al., 2022; He et al., 2024; Valman et al., 2024).
Despite the development of numerous water extraction and flood map-
pingmethods, the negative influence of cloud cover was often avoided in
previous studies only by using cloud-free optical imagery for flood
monitoring (Benoudjit and Guida, 2019). Alternatively, only cloud-free
optical satellite images were used to interpret land cover types before
and during flood events for flood impact assessments (Huang and Jin,
2020; Psomiadis et al., 2020). Therefore, exploring the potential of using
optical satellite imagery that might be cloud-covered in flood mapping
to improve flood monitoring frequency is worth further investigation
(DeVries et al., 2020; Li et al., 2022b). Developing a cloud reconstruc-
tion method for multisensor optical satellite imagery in cloudy scenarios
is essential for seamless flood extent mapping at high temporal density.

Cloud removal for seamless flood mapping: Seamless water
mapping with cloudy optical images is key for continuous flood extent
mapping. Existing methods can achieve cloud removal by integrating
complementary information from neighboring temporal images into the
cloud-covered areas of target images after transformations (Shen et al.,
2015; Zhang et al., 2021; Li et al., 2024). However, accurately recon-
structing the spatial details of ground surfaces in cloud-covered areas,
especially in images with land cover changes, such as flooding, is chal-
lenging. A cloud removal method for optical satellite images, targeting
the application scenarios for flood monitoring, is particularly necessary
to leverage multisensor satellite images for flood monitoring fully. In
this case, gap-filling methods for the reconstruction of cloud-
contaminated water areas, including methods based on ancillary data

(e.g., inundation frequency) (Zhao and Gao, 2018; Mullen et al., 2021),
spatiotemporal neighborhood similarity (Li et al., 2021; Bai et al., 2022;
Huang et al., 2023), and spatiotemporal modeling (Li et al., 2022a; Bai
et al., 2023), have been studied recently. Although these recent studies
have developed gap-filling methods for seamless water mapping, such
methods are not tailored for and validated in flooding scenarios, leaving
room for further improvements. First, existing studies of index-based
water extraction methods require manual feature extraction and
threshold determination for water segmentation, which shows both
sensitivity and limitations in accuracy. In contrast, deep learning
methods, particularly recent large foundation models such as RVSA
(Wang et al., 2023), RemoteCLIP (Liu et al., 2023), and Prithvi-100M
(Jakubik et al., 2023), have significantly enhanced image processing
accuracy and offered potential for more precise water extraction. Sec-
ond, existing gap-filling methods can effectively reconstruct permanent
or seasonal surface water bodies covered by clouds (Mullen et al., 2021;
Bai et al., 2022; Huang et al., 2023). However, they fall short in flooding
scenarios with significant surface water changes, and their performance
is limited by the number of valid images during the flooding periods.
Third, water occurrence data generated based on historical satellite
observations show large uncertainties at low occurrence values and
often ignore low-frequency water dynamics like floods. This oversight
and the lack of confidence-level consideration in water occurrence make
it a big challenge for a direct application of existing methods (Zhao and
Gao, 2018; Li et al., 2021) for seamless flood mapping. Additionally,
locally adaptive threshold determination for water segmentation based
on water occurrence data warrants further consideration for accurate
reconstruction under complex cloudy and rainy weather conditions. In
practical flood extent mapping, the ability to obtain near-real-time
inundation maps is crucial for an effective emergency response to
flood disasters (Notti et al., 2018; DeVries et al., 2020; Tulbure et al.,
2022). In this context, ensuring the spatiotemporal consistency of time
series flood mapping results obtained based on multisensor satellite data
and improving the precision of dynamic flood monitoring are additional
issues to be considered.

To overcome these limitations in flood extent mapping with optical
images under varying cloud cover conditions, this study introduces a
robust seamless time series flood extent mapping method. This method
fine-tunes a large foundation model to achieve high-precision water
extraction, enables the reconstruction of cloud-covered flooding areas in
optical satellite time series imagery, and conducts time series refinement
via spatiotemporal modeling to improve the spatiotemporal consistency
of water maps. We utilize Harmonized Landsat and Sentinel-2 (HLS)
datasets (Claverie et al., 2018), which have been proven promising for
high-temporal-density flood mapping (Tulbure et al., 2022), as our
experimental data. HLS datasets, which harmonize images captured by
the Landsat-8/9 and Sentinel-2A/B satellites, offer image time series
typically at 2–3 day intervals with 30 m resolution. Through the vali-
dation of our developed seamless flood extent mapping method under
varying conditions at four global sites, this study aims to answer
whether cloud-covered flooding areas can be effectively reconstructed
in HLS image time series. The key contributions of this study are sum-
marized as follows:

1) We investigate the feasibility of reconstructing cloud-
contaminated flooding areas by introducing a method that facilitates
spatially continuous flood monitoring with cloudy time series imagery.
Utilizing this approach, we can generate a time series of seamless flood
extent maps, significantly mitigating the impacts of clouds on flood
mapping. Additionally, we demonstrate the potential of this recon-
struction method for seamless time series flood mapping by quantita-
tively evaluating its effectiveness under varying cloud cover conditions
and at different phases of flood events. The evaluation results affirm the
superiority of the proposed method in various scenarios.

2) The advantages of combining Landsat and Sentinel-2 images for
flood mapping are confirmed. The benefits of further integrating SAR
images (e.g., Sentinel-1) to augment flood mapping are also discussed,
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which we consider a promising new paradigm for extensive application
in this field.

By leveraging a combined time series of Landsat and Sentinel-2 im-
ages, this study aims to enhance the completeness, frequency, and pre-
cision of flood extent mapping in cloudy and rainy conditions, thereby
improving emergency response and contributing to effective flood
management.

The remaining contents are organized as follows. Section 2 in-
troduces the proposed method and provides the implementation details.
The experimental data and results are described in Section 3. In Section
4, we highlight the benefits of cloud reconstruction for flood mapping
and the incorporation of SAR images for enhanced flooding area
reconstruction, and then discuss the efficiency and limitations of the
proposed method. Our conclusions are drawn in Section 5.

2. Methodology

This study proposes to achieve seamless flood extent mapping at 30
m resolution based on HLS imagery to improve the completeness, fre-
quency, and precision of flood extent mapping, especially in cloud-prone
areas, and to benefit flood emergency response and management. The
flowchart of the proposed method is illustrated in Fig. 1. Three main
steps are involved. Specifically, in order to achieve optimal perfor-
mance, we first fine-tuned a large foundation model to enable accurate
identification of water extents from HLS images. Then, auxiliary water
occurrence data from the Global Surface Water (GSW) dataset (Pekel
et al., 2016) were utilized to reconstruct cloud- and cloud-shadow-
covered areas in the time series water maps based on the introduced
submaximal stability assumption. The cloud/shadow mask used was
defined by the Quality Assessment (QA) band included in the HLS
dataset, which was generated using the Fmask algorithm (Zhu et al.,
2015). Lastly, we conducted spatiotemporal modeling to minimize po-
tential errors in water extraction and cloud reconstruction, consequently
enhancing the spatiotemporal consistency of time series water maps and
ensuring more accurate identification of flood extents.

2.1. Water extraction via a fine-tuned large foundation model

In this step, we harnessed the potential of a state-of-the-art deep

learning model for water extraction. Specifically, we utilized the large
foundation model Prithvi-100M (Jakubik et al., 2023) as the baseline,
which was constructed via the temporal Vision Transformer (ViT)
(Dosovitskiy et al., 2021) and pre-trained with a vast amount of
harmonized Landsat-8/9 and Sentinel-2 images in HLS datasets by the
NASA and IBM team (Jakubik et al., 2023). HLS datasets encompassed
global coverage and yielded 30 m surface reflectance products. The
baseline foundation model, pre-trained with HLS images from the
contiguous United States, served as an effective feature extractor and
was extended for water extraction in Landsat-8/9 and Sentinel-2 images
included in HLS datasets. Highly accurate water maps are expected to be
obtained by fine-tuning the foundation model with existing labeled
water and flood datasets featuring Landsat and Sentinel-2 images.

The Prithvi-100M model adopted a self-supervised encoder based on
ViT and employed a learning strategy involving the masked autoencoder
(MAE) (He et al., 2022). It utilized the mean squared error loss function
to guide model training. Operating on 3D patch data, the model was
allowed to receive the input data comprising multi-temporal images. For
each batch of data, the Query-Key-Value attention mechanism was
introduced, enabling the model to capture both temporal and spatial
features (Vaswani et al., 2017). The images used for model training
comprised six bands: blue, green, red, narrow NIR, SWIR 1, and SWIR 2.
This study concentrated on the task of flood segmentation for a mono-
temporal image, utilizing the Prithvi-100M–Sen1Floods11 model ar-
chitecture (Jakubik et al., 2023). This architecture was pre-trained on
the Sen1Floods11 dataset (Bonafilia et al., 2020) for flood mapping. The
model architecture is illustrated in Fig. 2. Starting with a multispectral
HLS image of dimensions M × N, the model normalized the six required
bands based on their corresponding mean value and variance of images
in the training dataset, and performed operations such as cropping and
flattening. In the encoding phase, the ViT encoder was utilized to encode
the data, generating patch embeddings with positional encoding. These
embeddings underwent multiple convolutions for feature extraction,
and the shape of the embeddings was then transformed back to the
original image size. In the decoding phase, a fully convolutional network
(FCN), applying the binary cross entropy loss function, was used to
implement the identification of flood-specific pixels.

To achieve optimal performance in water extraction, we fine-tuned
the pre-trained Prithvi-100M–Sen1Floods11 model. During the

Fig. 1. Flowchart of the proposed seamless time series flood extent mapping method. Three main steps. Step 1: water extraction for each HLS image via a fine-tuned
large foundation model; Step 2: reconstruction of cloud- and cloud-shadow-covered areas, as defined by the QA band of the HLS image, in each water map; and Step
3: refining time series water maps via the spatiotemporal Markov random field (MRF) modeling.
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process, we monitored the fine-tuning and evaluated the model’s per-
formance to determine the optimal model. Consequently, we selected
the model with the highest overall accuracy on the Sen1Floods11 test
dataset as the final model for subsequent water extraction. With the fine-
tuned model, time series water maps could be obtained on the basis of
the harmonized Landsat-8/9 and Sentinel-2 images. Cloud-covered
areas in these images, including the clouds and the cloud shadows
labeled in the quality assessment (QA) band of the HLS products, were
also labeled in the time series water maps.

2.2. Reconstructing cloud-covered areas in time series water maps

To reconstruct cloud-covered areas in time series water maps, we
introduced an approach that leveraged the water occurrence data
included in the GSW dataset (Pekel et al., 2016). The water occurrence
data, in which each pixel denotes the frequency of water presence, were
crafted by aggregating monthly water coverage data using historical
Landsat imagery spanning from 1984 to 2021. The assumption is that in
a local area, if most cloud-free pixels possessing a certain water occur-
rence value are identified as water, adjacent cloud-contaminated pixels
with water occurrence exceeding this value are likely to be water (Zhao
and Gao, 2018; Mullen et al., 2021). This assumption strengthens as the
proximity between cloud-free and cloud-contaminated pixels increases.

In addition, considering the biases inherent in the water occurrence
data, to determine optimal water occurrence thresholds with high con-
fidence automatically for the robust reconstruction of cloud-
contaminated pixels under varying cloud cover conditions and water
dynamics, we introduced a “submaximal stability” assumption. This
assumption was based on our observations, which guided the threshold
determination. The three observations are as follows: 1) water extents
under regular conditions usually fall within the range of maximum
water extents; 2) water dynamics often occur in areas with low water
occurrence; and 3) random cloud cover has a greater impact on the
occurrence calculation for surface water with lower occurrence than
those for surface water with higher occurrence, thus indicating a trend
in which low water occurrence implies low confidence. From these ob-
servations, the greatest overlap between regular and maximum water
extents occurs in areas with high occurrence. Furthermore, the ratio of
pixel counts in histogram bins for water occurrence within regular and
maximum extents generally tends to increase across the occurrence
range and can generally indicate the confidence level of water occur-
rence. Therefore, optimal water occurrence thresholds exceeding certain
confidence levels can be determined on the basis of this generally
increasing ratio and robust trend for the reconstruction of cloud-
contaminated water pixels.

Consequently, we implemented the reconstruction of cloud-covered

areas in time-series water maps over a local sliding window, iteratively
in a pixel-by-pixel and image-by-image manner. All cloud-contaminated
pixels were assigned a new class: 1 for water or 0 for non-water. The
reconstruction process was applied only to cloud-contaminated pixels in
the water maps, while the identified water and non-water pixels
remained unchanged. The reconstructed binary water maps W(x, y, t)
can be formalized as follows:

W(x, y, t) =

{
1, if P(x, y, t) > T

0, otherwise
, (1)

where P(x, y, t) denotes the water occurrence of pixel (x, y) at date t. T is
the determined water occurrence threshold over the sliding local win-
dow centered around the target pixel.

The local window size was adaptively determined based on the cloud
cover conditions within the window. To ensure that enough valid pixels
were involved for reconstruction, the initial window size was set at 50 ×

50 and was stepwise increased if the cloud-free pixels within the window
were not predominantly water. If the window size reached themaximum
height or width of the image, it was reset to the entire image size. Fig. 3
illustrates the detailed steps for the reconstruction of cloud-covered
areas in an example water map. The determination of the water occur-
rence threshold T, which was based on the introduced “submaximal
stability” assumption, involved three steps. First, the histogram of water
occurrence excluding cloud-covered areas shown in Fig. 3(d) and the
histogram of water occurrence excluding non-water and cloud-covered
areas shown in Fig. 3(e) were computed. Then, the pixel count ratio,
which is defined as the ratio of the pixel count in the histogram bin of
Fig. 3(e) to that of Fig. 3(d), was obtained. This ratio indicates the
proportion of observed water occurrence pixel count to the actual water
occurrence pixel count and can reflect the confidence level of the water
occurrence. The introduced “submaximal stability” assumption was also
applicable to the water occurrence excluding cloud-covered areas in
Fig. 3(e) and Fig. 3(d) because of the random distribution of clouds in
images. Finally, the water occurrence threshold T was determined as the
water occurrence corresponding to the first histogram bin in the range of
[0,100], in which the pixel count ratio equaled or exceeded the optimal
threshold of 0.35. The optimal pixel count ratio threshold was carefully
selected by parameter sensitivity analysis, in which iterative tests were
conducted for the pixel count ratio threshold within a typical range of
[0, 0.6] at an interval of 0.01. The optimal threshold was determined on
the basis of the reconstruction accuracy assessments through a series of
simulation experiments, as described in Section 3.3.2. Once the water
occurrence threshold within the local window was determined, if the
water occurrence value of a cloud-contaminated target pixel exceeded
this threshold, then the pixel was classified as water; otherwise, it was

Fig. 2. The architecture of the Prithvi-100M–Sen1Floods11 model for flood mapping (
Adapted from Jakubik et al., 2023).
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classified as non-water, as shown in Fig. 3(g). This process continued
until all cloud-covered pixels in each cloud-covered water map were
reconstructed.

The proposed reconstruction approach offered two primary advan-
tages: 1) It used locally adaptive window sizes that accounted for the
spatial proximity between local areas, enhancing the accuracy and detail
of reconstruction—especially beneficial for small water bodies. It also
accommodated the heterogeneity in flooding area changes across
different regions, including events such as dam breaches, in which the
surface water in reservoirs may shrink instead of expanding like flooded
areas. 2) The method employed the pixel count ratio to determine the
water occurrence threshold on the basis of the introduced “submaximal
stability” assumption, which offered greater stability compared with
using direct pixel counts. This stability ensured that variations in the
water occurrence histogram, which may arise from differing cloud cover
conditions and water dynamics, leading to variable pixel counts, do not
affect the threshold determination.

2.3. Time series refinement of water maps via spatiotemporal MRF
modeling

Inconsistencies may exist in reconstructed time series water maps
owing to differences among images captured under varying cloud cover
conditions. In this study, spatiotemporal MRF modeling was employed
to refine the reconstructed time series water maps and enhance their
spatiotemporal consistency. Specifically, each pixel in time series water
maps belonged to only two possible classes, i.e., water and non-water,
denoted as 1 and 0, respectively. Given that water areas are likely to
be connected patches and that the water body at a given pixel is likely to
persist for certain periods even during flood events, the time series water
maps were assumed to satisfy the MRF properties with a Gibbs potential
function in spatial and temporal domains (Moussouris, 1974; Li, 2009;
Kasetkasem et al., 2014). The Gibbs potential function defined the en-
ergy of a configuration, i.e., the sum of the potential (or cost) for spatial
and temporal local neighborhoods. Thus, a spatiotemporal MRF model
was constructed to minimize an energy function to find the most likely

state configuration, indicating the classes of water and non-water for
each pixel. The energy function E(i, j, k) for a given target pixel at
location (i, j) and date k can be formalized as follows:

E(i, j, k) =
∑

s∈S

∑

t∈T
ws,t⋅I

(
xs,t ∕= xi,j,k

)
, (2)

where I(Â⋅) checks whether the class of pixels in spatial (s ∈ S) and
temporal (t ∈ T) neighborhoods is different from the center pixel xi,j,k.
The weightws,t is determined on the basis of spatiotemporal proximity to
the center pixel, in which a smaller spatiotemporal proximity leads to a
larger weight, defined as follows:

ws,t = γ

1
Ds

∑
s∈S

1
Ds

+ β

1
Dt

∑
t∈T

1
Dt

, (3)

where γ and β are the balanced parameters applied to the spatial and
temporal terms, respectively. Ds is the 2D Euclidean distance from the
pixel in neighborhood S to the center pixel xi,j,k. Dt refers to the temporal
distance from the pixel in adjacent timeslots T to the target date k. In this
study, the size of neighborhood S is empirically set to 3 × 3 pixels to
preserve spatial detail efficiently; the time range of adjacent timeslots T
is set to be [k − 5, k + 5], which ensures that only timely information is
involved during reconstruction, considering the typical duration of flood
events.

A smaller weight of 0.75 was specifically assigned to the recon-
structed pixel compared with that for the clear pixel during the energy
computation process to mitigate the uncertainty in refinement due to
potential reconstruction errors. The optimal classes (i.e., water and non-
water) were assigned to each pixel in the reconstructed time series water
maps, determined by achieving the minimum energy state calculated
using Equations (2) and (3). Refined time series water maps were
generated by applying the refinement process to each pixel accordingly.

Flood inundated areas were identified by excluding pre-flood water
from the refined time series water maps. In this study, the maximum
water extent prior to a flood was determined from the time series water

Fig. 3. Illustration of reconstruction of cloud-covered areas in the water map. (a) Cloudy HLS image; (b) Initial cloud-covered water map; (c) Water occurrence in the
GSW dataset; (d) Water occurrence excluding cloud-covered areas labeled in (b); (e) Water occurrence excluding non-water and cloud-covered areas labeled in (b); (f)
Water occurrence histograms for (d) and (e) and determination of the water occurrence threshold. The threshold is determined as the water occurrence corresponding
to the first histogram bin in the range of [0,100], in which the pixel count ratio equals or exceeds the optimal threshold of 0.35; (g) Reconstructed binary water map.
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maps. Water within this extent was labeled as pre-flood water on the
flood extent map, while water outside this extent was labeled as flood-
water. Consequently, three classes, namely, non-water, pre-flood water,
and flood water, were labeled on the final time series flood extent maps.

3. Results and analysis

3.1. Experimental data

In this study, four global study sites located in four different coun-
tries were selected. The geographical locations of these sites, along with
the corresponding number of harmonized Sentinel-2 and Landsat-8/9
scenes for experiments, are shown in Fig. 4. This figure also offers a
comprehensive overview of the cloud percentages derived from cloud
and cloud shadow flags of each scene in HLS datasets within the study
periods.

Among the four study sites, Site 1 is situated in Assam, India, known
for having one of the highest frequencies of flood occurrences globally
(Rentschler et al., 2022). The selected flood event occurred between
May and August 2022, extensively affecting Assam, India and the Sylhet
region of Bangladesh. Site 2 is located in Sindh, Pakistan, which expe-
rienced a flood event in August and September 2022. This event was
notable for its widespread impact, significant consequences, high sat-
ellite revisit frequency, and minimal cloud cover during the flooding,
making it a focus for flood mapping study (Tulbure et al., 2022). Site 3 is
located in Rio Grande do Sul, Brazil, which experienced a flood in
October 2023 due to intense rainfall causing river overflow. This event
featured heavy cloud cover, low satellite revisit frequency, and limited
available observational information, marking its research significance.
Site 4 is located in Michigan, USA, where a dam failure flood occurred
on May 19, 2020. Unlike the other three events, the dam failure caused
simultaneous expansion and shrinking of the water extent, making the
reconstruction of cloud-covered water areas challenging.

3.2. Accuracy evaluation of the large foundation model for water
extraction

The Prithvi-100M–Sen1Floods11 model (Jakubik et al., 2023), fine-

tuned on the Sen1Floods11 dataset (Bonafilia et al., 2020), was used for
water extraction in HLS images. Among the 446 labeled 512× 512 chips
in the Sen1Floods11 dataset, encompassing all 14 biomes and spanning
11 flood events, 267 chips were used for model fine-tuning, 89 chips for
model validation, and the remaining 90 chips for model testing. The
performance of the pre-trained model and the fine-tuned model for
water extraction was evaluated in terms of five metrics, namely, overall
accuracy (OA), precision, recall, mean intersect over union (mIoU), and
F1-score. The accuracy comparison results are provided in Table 1. The
results showed an increase of 1.08 % in precision and a decrease of 0.56
% in the recall, which resulted in an overall improvement of the fine-
tuned model in OA with increased training epochs compared to the
pre-trained model across test images in the Sen1Floods11 dataset. Note
that the commission errors in water maps are more serious than the
omission errors, as the latter can potentially be recovered during the
reconstruction process of the proposed method, while the former might
lead to more severe errors. In this case, the fine-tuned model is more
appropriate than the pre-trained model. The 97.35 % OA indicates the
promising capacity of the fine-tuned model for flood extent mapping.

3.3. Comparison of reconstructed flood maps and accuracy assessment

3.3.1. Time series flood extent mapping with the proposed reconstruction
method

Fig. 5 shows typical seamless time series flood mapping results at
four study sites generated by the proposed approach, and the complete
flood mapping results are presented in Figs. S1–S4 as supplementary
materials. False-color HLS images, initial water maps, and reconstructed
flood maps are provided for each study site. From the false-color HLS
images and initial water maps, the cloud cover during the flood period

Fig. 4. Locations of four global study sites and cloud cover percentage distribution of HLS image time series for experiments (base map credit: NASA Visible Earth).

Table 1
Accuracy comparison of pre-trained and fine-tuned models for water extraction
with test images in the Sen1Floods11 dataset.

OA Precision Recall mIoU F1-Score

Pre-trained model 97.25% 87.85% 90.54% 0.805 0.892
Fine-tuned model 97.35% 88.93% 89.98% 0.809 0.895
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Fig. 5. Reconstruction results of the proposed method for seamless time series flood extent mapping. (a) Assam, India; (b) Sindh, Pakistan; (c) Rio Grande do Sul,
Brazil; and (d) Michigan, USA. For each study site, 4 (for the first three sites) or 2 (for the last site) images acquired at different flood stages, and the corresponding
water maps before and after reconstruction are selected to be shown as examples. The 1st and 4th columns show the original HLS images, the 2nd and 5th columns
show the initial water maps overlaid with cloud/shadow masks, and the 3rd and 6th columns show the reconstructed water maps with flooded areas highlighted in
red. Note that ’L’ or ’S’ follows the acquisition dates on each image to indicate that the HLS images were obtained from Landsat or Sentinel-2 satellites, respectively.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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was significant, and valid flood observation data were sparse and
limited. HLS images partly covering study areas were also used for ex-
periments to enhance flood mapping frequency. As a result, the average
satellite observation intervals for the four study sites were significantly
improved from 8.3, 5.0, 6.2, and 4.4 days to 3.1, 2.5, 3.2, and 2.9 days,
respectively. In no-value areas of these spatially incomplete images, the
same reconstruction process as that in the cloud-covered areas was
applied. The visual evaluation of the reconstructed floodmaps suggested
the effectiveness of the proposed method in seamless flood extent
mapping under varying cloud conditions, i.e., in overall flood inunda-
tion trend and reconstruction details under different flood stages among
the study sites.

In consideration of the connection between flood events and rainfall,
comparing the areas of flood inundated regions with rainfall amounts
could help generally evaluate the accuracy of the reconstructed flood
maps. In this study, we collected daily precipitation data, i.e., CPC
Global Unified Gauge-Based Analysis of Daily Precipitation from the
NOAA Physical Sciences Laboratory website (https://psl.noaa.gov/), of
each site during the study period. In Fig. 6, areas of identified pre-flood
water and floodwater are compared with daily precipitation over the
four study sites. Changes in flood inundated areas were not only related
to daily precipitation over the study sites, but were also affected by
topographic relief and the rainfall conditions nearby the study sites.
Moreover, biases might exist in estimated change trends of floodwater
areas because of the potential reconstruction error under varying cloud
cover conditions. The comparison results showed a general consistency
between the changes in floodwater areas and rainfall with consideration
of the time lag effects, which demonstrated the effectiveness of the
proposed method from a different perspective.

3.3.2. Reconstruction performance evaluation under varying cloud cover
conditions

Simulation reconstruction experiments and comparative analysis
were conducted to quantitatively evaluate the performance of the

proposed method in the reconstruction of cloud-covered areas in water
maps. This evaluation encompassed groups of simulation experiments in
reconstructing cloud-covered areas and refining time series water maps,
and comparisons of the reconstructed results of the proposed method
with those of a gap-filling approach (Zhao and Gao, 2018). In this study,
benchmark datasets with reference water maps were constructed to
evaluate different reconstruction methods. We selected locally cloud-
free HLS images with a size of approximately 1000 × 1000 pixels
from each of the four study sites and manually annotated the extents of
surface water. For the comprehensive evaluation of the performance of
different methods in diverse scenarios, HLS images acquired at different
flood stages (i.e., before/after flood, during flood) were involved to
obtain reference water maps (i.e., ground truth) for comparison. In
addition, real cloud masks with three levels of cloud coverage (i.e., low:
<30 %, medium: 30–60 %, high: >60 %) were overlaid with reference
water maps to simulate cloud-covered water maps for reconstruction.
These real cloud masks were originally obtained from the QA band of
collected HLS images and modified by applying morphological opera-
tions to determine the desired cloud cover percentages. Different
methods were employed to reconstruct the simulated cloud-covered
water maps together with other water maps in the time series of each
study site. The reconstruction results of different methods were
compared against reference water maps for quantitative accuracy
evaluation, in which five metrics, namely, OA, precision, recall, mIoU,
and F1-score, were adopted for accuracy measurement.

Fig. 7 shows the reconstruction results of the simulation experiments,
and Table 2 provides the detailed accuracy evaluation results of the
compared gap-filling method and the proposed method with and
without the refinement process described in Section 2.3. The recon-
struction results showed that our methods generally outperformed the
compared gap-filling method in terms of OA, mIoU, and F1-score under
different conditions, with much less water misidentification errors, as
shown in Fig. 7, and such superiorities strengthened during flood. While
the compared gap-filling method generally achieved higher recall

Fig. 6. Comparison of areas of identified floodwater (red bar) with daily precipitation (light blue background) over four test sites during flooding periods. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Comparison of water extent maps reconstructed by the compared gap-filling method (Zhao and Gao, 2018) and the proposed method with and without
spatiotemporal modeling-based refinement through simulated data experiments.
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compared with our methods during non-flood periods, it sacrificed
precision. Our method employed a stable ratio-based strategy to char-
acterize water extent, making it less sensitive to the impact of varying
cloud cover conditions. Furthermore, the locally asymptotic window
reconstruction strategy employed in the proposed method considered
the heterogeneity of local areas during flood, contributing to better
reconstruction results.

Specifically, during flood and non-flood periods, the OA of the pro-
posed method was 96.46 % and 97.91 %, respectively, showing absolute
improvements of 3.78 % and 6.70 %, respectively, over the compared
gap-filling method. The F1-score of the proposed method was 0.931 and
0.903, also showcasing obvious absolute increases of 0.060 and 0.131,
respectively, compared with the gap-filling method. Under three con-
ditions with low, medium, and high cloud coverage, the average F1-
score of the proposed method was 0.955, 0.920, and 0.875, respec-
tively. Although the reconstruction accuracy decreased as the cloud
cover percentages increased, our method still demonstrated significant
improvements in F1-score compared with the gap-filling method during
flood and non-flood periods, with absolute increases of 0.051, 0.095,
and 0.140 under low, medium, and high cloud coverage conditions,
respectively. The above comparisons highlighted the effectiveness of the
proposed method under different flood stages and varying cloud cover
conditions. Furthermore, compared with the results of our method
without refinement under low, medium, and high cloud coverage, our
method with refinement showed absolute improvements of 0.016,
0.033, and 0.071 in terms of F1-score, respectively. This finding indi-
cated that the time series refinement via spatiotemporal modeling
played a more crucial role in the reconstruction of cloud-covered areas
as cloud cover percentages increased, leading to greater accuracy
improvements.

3.3.3. Comparison of reconstruction results with high-resolution
PlanetScope images

Commercial PlanetScope satellite images with a high resolution of 3
m were introduced to further validate the reconstructed flood maps with
real flood situations. PlanetScope satellites capture images of the entire
Earth surface almost daily. In contrast with the 30 m-resolution HLS
images, 3 m PlanetScope images allow for the identification of water
with finer details, including smaller water bodies. We collected the
PlanetScope images acquired at the same or nearest neighboring date as
the HLS images over the four study sites. Due to the differences in

imaging times of different satellites, cloud cover conditions and flooding
extents in the HLS and PlanetScope images can vary substantially.
Therefore, PlanetScope images can only be used for visual validation.
Fig. 8 offers a visual comparison of the HLS images and the initial and
reconstructed water maps with PlanetScope images and their derived
Normalized Difference Vegetation Index (NDVI) maps. NDVI has been
considered effective in distinguishing surface water from land pixels
(Vermote and Saleous, 2007; Zhu and Woodcock, 2012), and is thus
used to highlight the surface water in PlanetScope images. The com-
parison showed that the proposed method could achieve relatively ac-
curate water map reconstruction even for images with limited cloud-free
areas.

4. Discussion

4.1. Benefits of cloud reconstruction for flood mapping

To further demonstrate the significance and benefits of cloud
reconstruction for flood mapping, we compared the differences between
flood maps generated with and without cloud reconstruction. As illus-
trated in Fig. 9, the comparisons involved example HLS images taken
during floods, the maximum water extents in the GSW dataset, and
maximum water extents and flood duration maps composited with
initial and reconstructed time series water maps. The initial water maps
might be spatially incomplete owing to cloud cover. In this paper, the
maximum water extent denotes the maximum-extent flood inundated
areas, and the flood duration map represents the frequency (i.e., the
duration of floods) at which inundation was observed. The results
showed that the reconstructed maximum water extents provided timely
flood information compared with the reference extents in the GSW
dataset and more spatially complete flood inundated areas compared
with those composited with initial water maps. Additionally, the
reconstructed seamless water maps enhanced the spatial completeness
of the composited flood duration maps in comparison with the flood
duration maps composited with initial water maps. Similar conclusions
on the benefits of cloud reconstruction for time series water mapping
were discussed in recent studies (Bai et al., 2022; Huang et al., 2023).
Themaximumwater extent and flood durationmaps are crucial for flood
monitoring and management, such as in flood impact assessments
(Bofana et al., 2022). Although uncertainties may arise in the recon-
struction, our method generally provides an effective way to generate

Table 2
Accuracy assessment of reconstructed water maps under varying cloud cover conditions before and during the flood events.

Phases Cloud Cover Method OA Precision Recall mIoU F1-Score

During Floods Low Zhao and Gao (2018) 96.74 % 96.37 % 92.39 % 0.891 0.942
Ours without refinement 97.29 % 96.79 % 93.22 % 0.904 0.949
Ours 98.50 % 97.49 % 96.50 % 0.942 0.970

Medium Zhao and Gao (2018) 92.67 % 90.73 % 86.19 % 0.779 0.874
Ours without refinement 94.56 % 92.56 % 87.83 % 0.816 0.898
Ours 96.14 % 93.57 % 91.96 % 0.864 0.924

High Zhao and Gao (2018) 88.63 % 87.93 % 75.85 % 0.663 0.797
Ours without refinement 91.08 % 89.61 % 78.76 % 0.714 0.833
Ours 94.75 % 91.84 % 88.57 % 0.822 0.898

Mean Acc. Zhao and Gao (2018) 92.68 % 91.67 % 84.81 % 0.777 0.871
Ours without refinement 94.31 % 92.99 % 86.60 % 0.811 0.893
Ours 96.46 % 94.30 % 92.34 % 0.876 0.931

Before/After Floods Low Zhao and Gao (2018) 96.21 % 81.04 % 94.41 % 0.776 0.867
Ours without refinement 98.35 % 95.39 % 90.86 % 0.868 0.928
Ours 98.79 % 97.71 % 90.93 % 0.890 0.940

Medium Zhao and Gao (2018) 90.62 % 68.56 % 94.10 % 0.650 0.776
Ours without refinement 96.39 % 87.42 % 88.72 % 0.782 0.877
Ours 98.07 % 94.43 % 89.18 % 0.845 0.915

High Zhao and Gao (2018) 86.80 % 58.38 % 85.58 % 0.518 0.673
Ours without refinement 93.71 % 81.45 % 76.37 % 0.635 0.775
Ours 96.87 % 92.10 % 80.62 % 0.747 0.853

Mean Acc. Zhao and Gao (2018) 91.21 % 69.33 % 91.36 % 0.648 0.772
Ours without refinement 96.15 % 88.09 % 85.32 % 0.762 0.860
Ours 97.91 % 94.75 % 86.91 % 0.828 0.903
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accurate and complete flood maps and thus benefits flood mapping
under cloudy and rainy scenarios.

4.2. Incorporating SAR images for enhancement of flooding area
reconstruction

All-weather SAR can penetrate clouds to conduct flood monitoring in
all weather conditions; thus, SAR data are promising for delineating
surface water under cloudy conditions. Theoretically, incorporating SAR
data can enhance the temporal frequency of flood monitoring and pro-
vide spatially complete water maps. To validate the importance of SAR
data in enhancing cloud-covered flooding area reconstruction, we
collected Sentinel-1 SAR images within each study site from Google
Earth Engine (GEE). Note that each Sentinel-1 image available on GEE
was preprocessed with the Sentinel-1 toolbox, and the steps including
noise removal, radiometric calibration, and terrain correction. Sentinel-
1-derived water maps were obtained on the basis of the Sentinel-1 dual-
polarized water index (Huang et al., 2023), which were then resampled
and stacked with time series water maps derived from HLS images in a
time order. The newly stacked time series maps were finally processed
through time series refinement to reconstruct simulated cloud-covered
water maps, as described in Section 3.3.2. We compared the accuracy
evaluation results with and without incorporating Sentinel-1 images to
assess the impact of SAR data on enhancing flood mapping. The exper-
imental results showed that incorporating SAR data could enhance the
reconstruction accuracy with a slight increase of 0.12 % in F1-score.
However, as shown in Fig. 10, owing to the differences in imaging
mechanisms between SAR and optical images, inconsistencies existed in

the water extraction results derived from SAR and optical images
(Markert et al., 2018), even when both were acquired on the same day.
Thus, while incorporating SAR images is beneficial to enhance the
flooding area reconstruction, especially under heavy cloud cover con-
ditions, the harmonization of water maps derived from SAR and optical
images warrants further exploration to strengthen this benefit.

4.3. Computational efficiency

Overall, the proposed method demonstrates high efficiency in pro-
cessing time. Specifically, using one of the study areas in Assam, India,
as an example, there are 24 HLS images in the time series, each with a
size of 3849 × 2880 pixels and 76.10 % mean cloud cover. Tested on a
desktop computer with an Intel i5-12490F CPU in a Python environ-
ment, our method took 9,234 s to complete the processing steps and
generate the seamless time series flood maps. Note that the method by
Zhao and Gao (2018) applied a global threshold for cloud reconstruc-
tion, allowing for a comprehensive comparison with our methods that
apply global and local thresholds, respectively, in both efficiency and
accuracy. Additionally, only the time cost for the cloud reconstruction
step is considered among the methods. The efficiency assessment results
show that the proposed method took 6,703 s with local reconstruction
and 641 s with global reconstruction, as being compared to 482 s by the
method of Zhao and Gao (2018). While our method, using a local sliding
window strategy for local reconstruction, took longer than the method
by Zhao and Gao (2018), which applied global reconstruction. Our
method yields a significant improvement in mean overall accuracy,
rising from 82.65 % to 92.76 % in Assam, India, as detailed in Section

Fig. 8. Comparison of reconstructed flood extent maps with high-resolution PlanetScope images.
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3.3.2. Nevertheless, the efficiency of our method could be further opti-
mized through implementation enhancements and parallel processing.

4.4. Limitations of the study

Cloud cover significantly impairs the capabilities of optical satellites
in monitoring floods. Although the reconstruction method proposed in
this paper is effective in mitigating the influence of clouds to support
continuous time series mapping of flood extent, limitations remained
within its multiple steps.

The fine-tuned large foundation model exhibits high accuracy in
water extraction, but it still introduces errors, such as misclassifying
cloud shadows as surface water and omitting the surface water
obstructed by vegetation, thus leaving room for improvements.
Furthermore, the QA band of the HLS products tends to overestimate
actual cloud cover, complicating the reconstruction process given the
limited number of valid pixels. Therefore, developing an enhanced large
foundation model with robust cloud masking capabilities is worthy of
further exploration.

The performance of the proposedmethod decreases with the increase

in percentages of cloud-covered areas that need to be reconstructed,
especially under conditions of persistent and heavy cloud cover. Our
assessments based on simulated data experiments indicate that for water
map reconstruction, the method should be applied when the cloud cover
is less than 96 % to maintain a typical F1-score accuracy above 0.8.
When cloud cover exceeds 96 %, the results become considerably un-
certain given insufficient cloud-free observational data. Therefore, a
cloud cover percentage below 96 % is essential for effective water map
reconstruction of cloud-covered areas.

Reconstructing cloud-covered areas in water maps during flood pe-
riods is more challenging compared with that during non-flood periods.
The reason is that cloud cover is often more severe during flood periods
than during non-flood periods, leading to a reduction in available
temporally auxiliary information, thereby making the improvement
through time series refinement less apparent. In addition, with the
relatively low frequency of flooding in surface water dynamics, cloud-
covered flooding area reconstruction is limited by the utilized water
occurrence data, which might introduce omissions of floodwater in the
reconstructed water maps, especially for extreme flooding events. While
the time series refinement of water maps via spatiotemporal modeling is

Fig. 9. Comparison of maximum water extent and flood duration maps composited with initial and reconstructed time series water maps. HLS images captured in (a)
Assam, India on 2022/07/15; (b) Sindh, Pakistan on 2022/09/10; (c) Rio Grande do Sul, Brazil on 2023/09/11; (d) Michigan, USA on 2020/05/20. Yellow polygons
in the figure panels highlight the major differences among the compared maps. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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beneficial to alleviate this issue, such a limitation, sourced from water
occurrence data, may hinder the potential of the proposed method in
capturing extreme flood events intensified by climate change.

5. Conclusions

This study investigated seamless flood extent mapping using HLS
image time series. We developed a robust method to reconstruct cloud-
covered areas in time series water maps and evaluated its effectiveness
for spatially continuous flood extent mapping under various flood sce-
narios with differing cloud cover conditions. The method was proven
effective in enhancing time series flood monitoring and outperformed
the compared gap-filling method in reconstructing cloud-covered
flooding areas. Flood extent mapping experiments at four global study
sites suggested an improvement in the average reconstruction accuracy,
as measured by F1-score, from 0.871 to 0.931 during flood periods and
from 0.772 to 0.903 during non-flood periods. The superiority of the
proposed method became increasingly prominent as cloud cover
increased, with an improvement in F1-score of up to 0.140 under high
cloud coverage conditions.

The experimental results also indicated that reconstructing cloud-
covered areas in time series water maps benefited the composition of
maximum flood extent maps and flood duration maps. The recon-
structed maps exhibited better spatial completeness and consistency
compared with those composited without involving reconstruction. In
addition, we consider the incorporation of SAR images as a promising
way to enhance reconstruction results under persistent and dense cloud
cover conditions, even though uncertainties and inconsistencies
occurred between water maps derived from optical and SAR images
owing to differences in their physical imaging mechanisms. The future
combined use of optical and SAR images for flood monitoring should
address this issue to ensure consistent flood extent mapping.

Overall, the proposed method provides an effective approach for
flood monitoring under cloudy and rainy scenarios, thus supporting
emergency response and disaster management. Future studies could
explore the harmonization of water maps derived from multimodal and
multisensor data. The delineation of water and cloud is crucial for
effective flood monitoring, and the accuracy of water maps and cloud
masks promises further enhancement with the introduction of a multi-

temporal foundation model for image time series. Hydrodynamic
modeling and additional auxiliary data, such as hydrodynamic simula-
tion and accurate high-resolution DEM data, when available, can be
utilized to refine reconstruction results further, especially when the
proposed method is applied to mapping extreme flooding events.
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Fig. 10. Comparison of flood mapping results generated from optical (i.e., Landsat and Sentinel-2) and SAR (i.e., Sentinel-1) images acquired on the same day.
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