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ABSTRACT
Polyline simplification is crucial for cartography and spatial database management. In recent decades, 
various rule-based algorithms for vector polyline simplification have been proposed. However, most 
existing algorithms lack parameter self-adaptive capabilities and require repeated manual parameter 
adjustments when applied to different polylines. While deep-learning-based methods have recently 
been introduced for raster polyline image simplification, they cannot achieve end-to-end simplifica-
tion when the input data and output results are vector polylines. This paper proposes a new deep- 
learning-based method for vector polyline simplification by integrating both the vector and raster 
features of the polyline. Specifically, a deep separable convolutional residual neural network was first 
used to extract the convolutional features of each image. Then, the region proposal network was 
modified to generate proposal boxes using vector coordinates, and these proposal boxes were used 
to locate the convolutional feature maps of bends. Finally, convolutional feature maps were fed into 
a binary classification network to identify unimportant vertices that should be omitted for vector 
polyline simplification. The experimental results indicated that the proposed method can exploit 
raster and vector features to achieve automatic and effective polyline simplification without prior 
map generalization knowledge and manual settings of rules and parameters. The polyline simplifica-
tion results of the proposed method have a higher compression ratio of coordinate points and lower 
shape deformation and deviation than the results generated by the classic Wang and Müller (WM) 
algorithm and Support Vector Machine (SVM) based algorithm, which shows the potential of the 
proposed method for future applications in map generalization.
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1. Introduction

Map generalization plays an essential role in generat-
ing multi-scale maps, managing spatial data, and 
transmitting map data online (Ai et al. 2017; Liu et al.  
2016; Vrotsou et al. 2015). With rapid developments in 
the automatic mapping of remote sensing images, the 
problem of simplifying the vector polylines obtained 
from edge detection and edge tracking has led to new 
requirements for generalization technology (Chen 
et al. 2020). Most classical polyline simplification algo-
rithms are based on computational geometry techni-
ques and cartographic rules (Douglas and Peucker  
1973; Li and Openshaw 1992; Stanislawski et al.  
2014; Visvalingam and Whyatt 1993; Wang and 
Müller 1998). However, these rule-based methods 
are often facing limitation in performance, particularly 
when the man-made rules have to be adapted to 
different polylines (Du et al. 2021; Kent 2017).

Recently, some machine-learning algorithms have 
provided a new generalization paradigm that can 
learn abstract map generalization rules from existing 
simplification cases without manual parameter con-
figurations (Jiang 2003; Karsznia and Weibel 2018; 
Lee et al. 2017). For example, back propagation 
neural networks (Cheng et al. 2013), decision trees, 
genetic algorithms (Karsznia and Sielicka 2020), and 
support vector machines (SVM) (Duan et al. 2020) 
are the most commonly used machine-learning 
methods for map generalization. Although these 
machine-learning-based methods, which can be 
generally classified into vertex- and image-based 
categories, can learn some simplification rules, 
both categories have their own shortcomings. 
Vertex-based methods cannot utilize image features, 
whereas image-based methods have difficulty pre-
serving original coordinates (Du et al. 2022). Further, 

CONTACT Shaofen Xu xvshaofen@cug.edu.cn

GISCIENCE & REMOTE SENSING                         
2023, VOL. 60, NO. 1, 2275427 
https://doi.org/10.1080/15481603.2023.2275427

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been 
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0002-9671-7430
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2023.2275427&domain=pdf&date_stamp=2023-10-27


image-based methods are based on feature engi-
neering, which cannot achieve end-to-end data- 
driven training.

As an end-to-end solution, deep-learning-based 
methods can operate adaptively according to original 
data distributions without prior human knowledge. 
Such models have been successfully applied in the 
field of computer vision for image classification, 
semantic segmentation, and object detection 
(LeCun, Bengio, and Hinton 2015; Yu and Chen  
2022). Recently, deep-learning-based methods have 
been applied to geospatial domains, such as in the 
automatic extraction of feature targets on maps and 
remote sensing images using deep convolutional 
models (Li and Hsu 2020), map style migration using 
generative adversarial networks (GANs) (Kang, Gao, 
and Roth 2019), and code protection of geographic 
location information using synthetic information (Rao 
et al. 2020). Considering that deep-learning-based 
methods demonstrate great promise in improving 
the efficiency and automaticity of map generalization 
(Ai 2021), some studies have applied deep-learning- 
based methods to automatic map generalization, 
such as building simplification and aggregation and 
road network simplification (Yan et al. 2020; Zhou and 
Li 2017). However, most studies can only deal with 
raster data and end up neglecting vector map data. 
Additionally, these existing deep-learning-based line 
simplification methods can only obtain raster simpli-
fication results, which cannot be directly used in vec-
tor map cartography and stored in vector spatial 
databases.

To address these issues, a vector polyline simplifi-
cation method based on the region proposal network 
(RPN) is proposed herein. It integrates raster and vec-
tor features to obtain an end-to-end vector polylines 
simplification. Here, first, the vector polyline map was 
converted to a raster map and fed into a deep separ-
able convolutional residual neural network to extract 
the convolutional features from the map. Second, the 
proposal generator of the RPN was modified to gen-
erate proposal boxes using the minimum bounding 
rectangles of vector coordinates, which were then 
used to locate the bend feature maps. Finally, these 
feature maps with different sizes were unified by the 
regions of interest (ROI)-pooling layer and fed into 
a binary classification network to obtain a vector poly-
line simplification result.

The main contributions of our approach include 
the following three aspects. First, an end-to-end train-
able neural network based on the RPN is proposed for 
implementing polyline simplification. Compared with 
traditional rule-based methods, the method does not 
require prior map generalization knowledge or man-
ual settings of rules and parameters. Second, in con-
trast to the existing RPN that generates proposal 
boxes from each pixel of the image, a new region 
proposal box generation method for vector polylines 
based on the coordinates of polyline vertices, which 
generates fewer proposal boxes and can integrate 
vector and raster features of the polyline, is proposed. 
Finally, compared with most of the existing deep- 
learning-based polyline simplification methods that 
can only deal with raster data and obtain the simpli-
fication result in a raster format, the proposed 
method can implement vector polyline simplification 
and obtain a vector format result, which avoids 
further raster-to-vector conversion and saves time 
consumption in polyline simplification.

2. Related studies

Since the 1970s, several classical line simplification 
algorithms have been proposed. For example, 
Douglas and Peucker (1973) (DP) developed the famous 
DP algorithm, which determines the trade-off between 
points based on the perpendicular distance between 
a vertex and line connecting the start and end points. Li 
and Openshaw (1992) introduced the natural rule con-
cept of the “smallest visible object” and achieved local 
adaptive linear simplification based on the Li – 
Openshaw algorithm. Visvalingam and Whyatt (1993) 
considered the “effective area” of points to achieve the 
progressive simplification of polylines. Wang and 
Müller (1998) (WM) proposed that the overall structure 
of the line could be reasonably preserved by decom-
posing the line structure into a series of line bends and 
simplifying the line using rules such as elimination, 
combination, and amplification. Based on the above 
method, some researchers have combined or improved 
individual simplification operators to improve the per-
formance of algorithms (Park and Yu 2010; Zhou and Li  
2017). Additionally, the Voronoi diagram and Delaunay 
triangulations have been proposed as methods to con-
struct polylines and achieve line simplification using 
predefined thresholds (Ai et al. 2017).
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Most of the above classical line simplification algo-
rithms depend on certain mapping rules developed 
by cartographic experts, which are hard to adapt to 
different contexts. The rapid development of deep 
learning technology, which has numerous successful 
applications in digital image processing (LeCun, 
Bengio, and Hinton 2015), map style transfer (Kang, 
Gao, and Roth 2019), remote sensing image interpre-
tation (Li and Hsu 2020), provides new development 
opportunities for map generalization. Based on deep 
learning methods, the automatic capturing of image 
features such as size, granularity, and shape, as well as 
the exploration of deep information hidden in 
images, can effectively simulate the implementation 
of map generalization tasks. In addition, the develop-
ment of cartography over the years has provided 
a large-scale comprehensive case sample library for 
deep-learning-based methods that can be used for 
training and learning (Courtial, Touya, and Zhang  
2023). This has made it possible to combine deep 
learning with cartography, which was previously not 
feasible.

Currently, automatic map generalization based on 
deep learning remains in its infancy and is mainly 
applied to building and settlement generalization 
(Touya, Zhang, and Lokhat 2019; Yang et al. 2022). 
For example, Sester et al. (2018) introduced a deep- 
learning-based method in building generalization for 
the first time, using binary images as training data to 
train the U-net (Ronneberger, Fischer, and Brox 2015) 
model and obtained simplified building images. Feng 
et al. (2019) extended this study by comparing the 
building simplification performance using U-net, resi-
dual U-net, and a GAN at different target map scales 
and discovered that residual U-net demonstrated the 
best generalization performance. Courtial et al. (2021) 
used a GAN to achieve map generalization of build-
ings, roads, and rivers in densely populated urban 
areas. However, the generated map tiles suffered 
from problems such as overlapping elements and 
loss of information.

Certain polyline simplification studies based on 
deep learning have also been conducted. For exam-
ple, Courtial et al. (2020) explored the possibility of 
applying U-net to mountain road generalization. 
However, the simplified results were in a raster format 
with rough edges and holes. Later, they further stu-
died the application of GANs for mountain road sim-
plification (Courtial, Touya, and Zhang 2023). 

Although they proposed some graphic constraints to 
improve the generated image quality (Courtial, Touya, 
and Zhang 2022), important local issues persisted, 
and the resulting images could not be used as topo-
graphic maps. Du et al. (2021) used both vector and 
raster features to omit vertices – they proposed 
a polyline tracking segmentation algorithm to gener-
ate training images for the Pix2Pix (Isola et al. 2017) 
model and obtain simplified images. However, they 
still needed to use the DP algorithm to simplify the 
vectorized polylines from the image results. The 
aforementioned studies were only able to simplify 
raster line features, and the generated results cannot 
be directly used. Currently, the vector data format 
remains the primary data format in map analysis and 
management. To address the issue of polyline simpli-
fication in the vector format, Yu and Chen (2022) 
developed an encoder – decoder network to generate 
multilevel simplified polylines from multiple hidden 
layers. However, the result of this method was too 
smooth to retain the original important feature coor-
dinates, and the input and output data (a stacked 
autoencoder encoding) were set with a fixed length, 
which required the model structure to be changed 
when dealing with different line simplification scenar-
ios. Therefore, an RPN-based method for vector poly-
line simplification that integrates both vector and 
raster features of the polyline is proposed in this 
paper. The proposed method is an end-to-end solu-
tion without man-made parameters, and the result of 
polyline simplification is directly in the vector format.

3. Method

The proposed method is an end-to-end model for 
polyline simplification, which was inspired by the con-
cept of line simplification based on bend analysis 
(Wang and Müller 1998), i.e. if all the bends on 
a polyline could be detected and eliminated, auto-
matic polyline simplification would be completed. 
The overall framework of the method, which com-
prises bend feature extraction, region proposal gen-
eration, and bend detection, is illustrated in Figure 1. 
First, a CNN was used to extract the convolutional 
feature map of the raster polyline. Second, the mini-
mum bounding rectangles of bends on vector poly-
lines were used to generate region proposals of the 
RPN as ROIs. Third, the bend features located by ROIs 
were unified by the ROI-pooling layer and fed into 
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a binary classification network to identify unimpor-
tant bends that should be omitted. After eliminating 
the unimportant bends from the vector polylines, 
simplification results of polylines in a vector format 
were obtained. The details of the proposed method 
are specified as follows.

3.1. Bend feature extraction

To extract the bend shape features of a polyline using 
a CNN, the vector polylines were first converted to 
raster images and segmented into units with the 
same size as required. The images were then fed into 
a CNN for feature extraction. MobileNetV2 (Sandler 
et al. 2018) was chosen as the backbone CNN to extract 

the features of the raster polylines. It has few para-
meters and is easy to train, which helps prevent over-
fitting when training the model. MobileNetV2 was 
proposed based on the depth-wise separable convolu-
tion. Compared with the standard convolution layer, it 
divides a standard convolution into a 1 × 1 convolu-
tion, called point-wise convolution, and a depth-wise 
convolution. As shown in Figure 2, (a) is the standard 
convolution with a convolution size of Dk×Dk×M and 
an input data size of Dk×N×M. (b) is a depth-wise 
convolution that applies a single filter to M input chan-
nels, and (c) is an N point-wise convolution that applies 
a 1 × 1×M convolution to combine the channel out-
puts. Depth-wise separable convolution replaces (a) 
with (b) and (c) and adds a batch normalization layer 

Figure 1. Illustration of the polyline simplification method based on the RPN. A raster polyline image and multiple region proposals 
are first input into a deep convolutional network to obtain the bend features. For each ROI, the extracted feature is pooled to the same 
size and then mapped by fully connected (FC) layers, and a softmax layer is used to determine the true proposal.

Figure 2. Illustration of depth-wise separable convolution. The depth-wise separable convolution is built by replacing (a) the standard 
convolution with (b) a depth-wise convolution and (c) a point-wise convolution. (d) network structure of MobileNetV2.
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and a ReLU activation function layer after both (b) and 
(c), which can effectively reduce the size of the model 
and computational effort. (d) illustrates the structure of 
MobileNetV2, which adopts the structure of dilation, 
followed by convolution and compression. By input-
ting polyline images with a size of 3 × 1024 × 1024 into 
the model, convolutional feature maps of raster poly-
lines with a size of 1280 × 32 × 32 can be obtained.

3.2. Region proposal generation

Inspired by the concept of target detection in com-
puter vision, this paper introduces an RPN to locate 
bends on polylines. The RPN was first proposed in the 
Faster R-CNN (Ren et al. 2017); it traverses the feature 
map through a sliding window and generates 
k region proposals for each pixel (normally k is set to 
nine and comprises three different sizes and scales). 
Then, all the proposals are input into two layers: 
a regression layer that outputs the coordinates of 
the boxes and a classification layer that outputs the 
probability of being an object. However, when gen-
erating region proposals for line simplification in this 
manner, the following problems may arise: 1) The 
generated proposals with fixed sizes and scales can-
not include all the bends on the polylines; 2) owing to 
the sparse information of the polyline feature map, 
generating proposals for each pixel results in a waste 
of computational resources; and 3) the generated 
proposals have no relationship with the vertices of 
the vector polyline and cannot integrate the vector 
features into the model when detecting bends. 
Therefore, a new region proposal generation method 
is proposed in this paper.

As the bend is formed by the vertex sequences on 
the vector polyline, the improved region proposal 
generation method generates proposals using the 
minimum bounding rectangles of the possible bend 
vertices of the original vector polyline. For example, 
assuming the points consist of the polyline are (P1, P2, 
P3, . . . , Pn), then the sequences of points that may 
form the bends are (P1, P2), (P1, P2, P3), . . . , (P1, P2, . . . , 
Pn), (P2, P3), (P2, P3, P4), . . . , (P2, P3, . . . , Pn), . . . , (Pn-1, Pn), 
and the minimum bounding rectangles of these point 
sequences are considered as the proposals. An exam-
ple of this new proposal generation method for 
a polyline with seven vertices is shown in 
Figure 3(a). This method has several advantages: 1) 
Generating proposals based on the vector polyline 
can build the corresponding relationship between 
the bending position of the raster image and the 
vector polyline. This is because the bounding rectan-
gles of bends can be mapped to the convolutional 
feature maps, and the location of bends detected 
from the feature maps can be mapped to vector 
polylines. Thus, polyline simplification can be com-
pleted by deleting the unimportant bends according 
to the classified feature maps. 2) Considering that the 
number of polyline vertices contained in the raster 
image is much less than the number of pixels in the 
feature map, the proposed method can reduce the 
number of proposals and save computational costs. 3) 
The size and scale of the proposal depend on the 
minimum bounding rectangle of the possible bend’s 
vertex sequences, which is more diverse and appro-
priate for the bend on the polyline and makes the 
extraction of bends on the polyline more accurate. 

Figure 3. Illustration of region proposal generation and bend feature extraction. (a) region proposal generation for a polyline with 
seven vertices; (b) process of obtaining possible bend features based on generated proposals.
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After generating the proposals using the bounding 
rectangles of point sequences of the polyline, the 
proposals are used to clip the possible bend features 
from the feature map and send them to the classifier 
to complete bend detection. The process for obtain-
ing a possible bend is illustrated in Figure 3(b).

3.3. Bend detection

To use the classifier network to complete the detec-
tion of bends, the extracted features must first be 
unified to the same size. However, changing the size 
of the target feature maps through cropping or scal-
ing inevitably changes its shape features, and thus, 
the ROI-pooling layer is adopted to unify the sizes of 
the feature maps. The ROI-pooling layer is a maximum 
pooling layer proposed by the Fast R-CNN (Girshick  
2015) to solve the problem of inconsistent feature 
map sizes of ROIs or proposals. Figure 4(a) illustrates 
the ROI-pooling process, which is as follows: First, the 
feature map from the last convolution layer and the 
region proposals generated by the minimum bound-
ing rectangles of the vertex sequences are obtained. 
Second, the proposals are mapped to the correspond-
ing positions of the feature map according to the ratio 
of the original image to the feature map (after feature 
extraction in the previous convolutional layers, the 
image size was reduced 32 times, so the input propo-
sals should also be reduced by 32 times). Third, the 
mapped area is divided into several sections of the 
same size. The number of sections is determined by 
the dimensional size of the output. In this study, the 
output size of the network structure was 7 × 7. Finally, 
the max pooling operation is performed in each sec-
tion. After the bend feature maps of the same size are 
output, they are flattened and fed into two FC layers, 

followed by a sigmoid layer to make a binary judg-
ment with a cross-entropy loss function (equation 1). 
For feature maps judged to be positive, their corre-
sponding proposals can be obtained, as shown in 
Figure 4(b), and the point sequences of bends that 
generate proposals can also be located on the vector 
polyline. Therefore, polyline simplification can be 
achieved by eliminating the sequence points (except 
for the first and last points of each sequence). 

Lcls ¼ � log p�i pi þ 1 � p�i
� �

1 � pið Þ
� �

; (1) 

Where pi is the true binary label, p�i is the probability 
predicted by the anchor as a target.

4. Experiment results and analysis

4.1. Experiment data

The experiments in this study were conducted on the 
coastline dataset GSHHG (Wessel and Smith 1996) 
(http://www.soest.hawaii.edu/wessel/gshhg). The 
dataset was derived from three publicly available 
datasets and was artificially processed; therefore, no 
inconsistencies were present within the dataset, such 
as intersecting segments (Wessel and Smith 1996). As 
shown in Figure 5, the study data include three major 
New Zealand Island coastlines: South Island and North 
Island as the training data and Stewart Island as the 
test data. The starting and ending map scales of the 
polylines in the dataset for the simplification experi-
ments were 1:100k and 1:250k, respectively. Polylines 
of 1:250k in the dataset were obtained via the DP 
algorithm simplification combined with manual 
topology correction. The raster images generated 
from the 1:100k polylines were used as the input 
data, the vertices of the 1:100k polylines were used 
to generate proposals, and the rectangles generated 

Figure 4. (a) Illustration of the ROI-pooling process. (b) red boxes represent the detected positive proposals.
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Figure 5. Distribution of experiment data. (a) and (b) show the 1:100k and 1:250k coastlines of New Zealand’s three main islands, 
respectively. Blue is the training data; red is the test data. (c) and (d) display the 1:100k and 1:250k Steward Island, respectively. (e)–(h) 
present details of coastlines before and after simplification. Gray denotes 1:100k; dark denotes 1:250k.
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from every two adjacent points of the 1:250k polylines 
were adopted as labels to train the model. The num-
ber of vertices and total length of the training and test 
datasets are listed in Table 1.

4.2. Experiment settings

According to the Li – Openshaw algorithm (Li and 
Openshaw 1992), the formula for the resolution or 
pixel size of the raster image is Fc=D/S. Here, Fc is the 
pixel size of the raster image, S is the scale of the 
polyline, and D is the minimum resolvable object 
(SVO). According to Song and Miao (2016), the SVO 
was set to 0.2 mm. To ensure that the details of the 
raster polylines are clearly visible, the pixel size Fc of 
the image after rasterization was set to Fc=D/2S in this 
study, and hence, the resolution of the image was Fc = 
½ × 0.2 mm ×100k = 10m. Additionally, to prevent 
sparsity in the polyline information and to avoid its 
effects on the accuracy of the model, the brush width, 
when rendering the raster polylines, was set to 5 
pixels. The input image size of the model was 
1024 × 1024 with a window overlap rate of 50%. The 
model was built, trained, and tested using PyTorch 
(https://pytorch.org), and the experimental environ-
ment was a computer with two graphics processing 
units (NVIDIA GeForce RTX 3080).

To compare with commonly used classical meth-
ods, we selected the WM algorithm because it is 
also a bend-based simplification algorithm imple-
mented in ArcGIS. It adjusts the degree of simplifi-
cation by modifying the length of bend baselines, 
considering changes in vertex count and length. The 
adjusted WM parameter settings we utilized were 
1500m and 650m, respectively. Additionally, given 
that extracting bend features from polylines requires 
the use of object detection techniques and fully 
convolutional networks like U-Net and GANs are 
not suitable for binary classification of bends in 
vector polyline simplification, we thus opted for an 
SVM-based polyline simplification algorithm to 
ensure a comprehensive comparison with other 
supervised methods. This algorithm begins by 

generating bends. If the distance of a point from 
the bend baseline is greater than 70% of the bend 
depth, it is marked as a bend, and otherwise not. 
Subsequently, five bend features, including bend 
area, bend baseline length, bend arc length, bend 
depth, and bend curvature, are computed to create 
a feature vector. Finally, SVM is employed for vector 
classification, with a focus on determining the pen-
alty coefficient (C) and kernel function. In our com-
parative experiments, we set C to 40, and the kernel 
function was specified as the Gaussian kernel 
function.

4.3. Metrics for quantitative evaluation

The accuracy of the proposed polyline simplification 
method was quantitatively evaluated based on the 
mean average precision (mAP) metric for each pixel. 
The mAP value can be calculated by integrating the 
area below the precision – recall (P – R) curve of the 
bend extraction results. The precision and recall are 
calculated as follows: 

precision ¼
TP

TP þ FP
; recall ¼

TP
TP þ FN

; (2) 

where TP represents true positive; FP represents false 
positive; TN represents true negative; and FN repre-
sents false negative.

The positive probability can be obtained by calcu-
lating the intersection over union (IoU): 

IoU A; Bð Þ ¼
area A\ Bð Þ

area A[ Bð Þ
; (3) 

where A is the predicted result, and B is the target 
label.

F1 is the harmonic mean of the precision and recall: 

F1 ¼¼ 2 �
precision� recall
precisionþ recall

: (4) 

For further quantitative analysis of the simplified 
results, the line simplification metrics proposed by 
McMaster (1986) were used to evaluate the polyline 

Table 1. Details of the datasets for experiments.
Training dataset Test dataset

Scale 1:100000 1:250000 1:100000 1:250000

Point number 76655 9883 3938 590
Total Length(m) 17111422 15542107 834319 720970
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simplification results. First, the percentage change in 
the number of coordinates (PCNC): 

PCNC ¼ 1 �
nPts

nPto

� �

� 100%: (5) 

where nPts is the number of simplified coordinates, 
nPtois the number of original coordinates.

Second, the displacement of the total length vector 
(DTLV), which indicates the total “geometric displace-
ment” of the polylines, was used to evaluate the 
position accuracy; 

DTLV ¼ 1 �
Pm� 1

i¼1 lsi
Pn� 1

j¼1 lsj

 !

� 100%: (6) 

where n and m refer to the number of vertices before 
and after simplification, respectively, and ls refers to 
the length of each segment.

Third, the standard deviation of coordinates (SDC), 
which was used to evaluate the consistency: 

SDC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼0
ðli �

Pn
i¼0 li

n

� �

Þ=n

s

: (7) 

where n refers to the number of vertices before sim-
plification; li refers to the simplified polyline.

Additionally, according to Yu and Chen (2022), the 
area change ratio (Ratio_SE) between the polylines 
before and after the simplification reflects the balance 
between shrinking and expanding areas. Ratio_SE is 
calculated as follows: 

RatioSE ¼
AS � AE
ASþ AE

�
�
�
�

�
�
�
�; (8) 

For closed polylines, the areas that exist before sim-
plification and do not exist after simplification are 

defined as shrinking areas (AS), and the areas that 
do not exist before simplification and exist after sim-
plification are defined as expanding areas (AE).

4.4. Experiment results

4.4.1. Comparison with WM algorithm at same point 
change
The simplification results of the method were com-
pared with those of the WM algorithm. First, from the 
perspective of data compression, the WM parameter 
was adjusted to ensure that a similar number of 
points were retained after simplification, as in the 
given 1:250k data. As shown in Figures 6 and 7, the 
simplified result of our method was highly similar to 
the target 1:250k coastline in terms of geometric 
shape features. The gently sloping shore, peninsulas 
sticking out from the shore, narrow bays, etc., which 
are difficult to handle with simplification, were simpli-
fied well by our method, which maintained the shape 
features of the original data. Although the result of 
the WM algorithm was smoother, it tended to remove 
the local bends from the polyline directly to avoid the 
problem of sharp angles, which resulted in significant 
deformations (blue boxes in Figure 7).

Table 2 shows the metric evaluation results for the 
entire coastline and three line segments, which reveal 
the improved performance of the proposed method. 
This illustrates that our method can achieve higher 
coordinate compression and smaller length deforma-
tion, as well as lower coordinate deviation, and has 
a better area-preserving ability. Figures 8 and 9 visua-
lize the coordinate deviation and area change of the 
proposed method and the WM algorithm, 

Figure 6. Comparisons of polyline simplification results. (a) 1:250k coastline. (b) simplified results by the proposed method. 
(c) simplified results by the WM algorithm.

GISCIENCE & REMOTE SENSING 9



Figure 7. Simplified result of three different polylines (lines 1–3) obtained using the proposed method and WM algorithm. (a)–(c) 
simplified results obtained using the proposed method for lines 1–3, respectively. (d)–(f) simplified results obtained using the WM 
algorithm for lines 1–3, respectively. The blue boxes highlight the offsets of the WM algorithm.

Table 2. Quantitative evaluation results of the proposed method and the WM algorithm. 
Line1, Line2, and Line3 refer to the lines shown in Figure 7. Emboldened values represent 
better performance.

Method All Line1 Line2 Line3

PCNC (%) Ours 77.99 80.56 80.36 80.30
WM 74.96 77.22 77.98 71.21

DTLV (%) Ours 13.09 14.81 14.23 14.20
WM 28.02 32.00 46.44 23.01

SDC (m) Ours 85.17 83.01 65.13 69.92
WM 295.73 253.91 663.04 202.22

Ratio_SE Ours 0.01 0.02 0.26 0.12
WM 0.20 0.27 0.44 0.41

Figure 8. Standard deviation of the coordinates. SDC results of the (a) proposed method and (b) the WM algorithm. The original 
polylines, simplified polylines, and distances from the original vertices to the simplified results are shown in gray, red, and blue, 
respectively.
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respectively. The simplification results of the pro-
posed method maintained good consistency with 
the original polylines.

4.4.2. Comparison with WM algorithm at same 
length change
From the perspective of shape change, the map scale 
can be estimated by the length of simplified lines (Ai 
et al. 2017). Therefore, the parameters of the WM 
algorithm were adjusted to retain a similar length to 

that of the target 1:250k map after simplification. The 
simplification results are shown in Figure 10. When 
comparing the results of our proposed method and 
the SVM-based method, both methods achieved 
good shape preservation visually. Table 3 presents 
the results of a quantitative analysis of the shape 
indices of the three methods. Comparing the WM 
algorithm with the other two methods, it is evident 
that when the WM algorithm achieved the same 
length change (WML), it retained too many points, 

Figure 9. Area change of polylines before and after simplification. (a)–(c) represent the area changes generated by the proposed 
method of lines 1–3, respectively. (d)–(f) represent the area changes generated by the WM algorithm of lines 1–3, respectively. The 
shrinking areas and the expanding areas are shown in gray and green, respectively.

Figure 10. Comparisons of polyline simplification results. (a) simplified results of the proposed method. (b) simplified results of the 
WML algorithm. (c) simplified results of the SVM-based method.
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which can cause data redundancy. Furthermore, the 
WML algorithm still showed more significant coordi-
nate displacement and area deviation in the SDC and 
Ratio_SE indices, while our proposed method exhib-
ited better shape preservation ability.

4.4.3. Comparison with the SVM-based method using 
bend units
Recently, Duan et al. (2020) proposed a line simplifica-
tion method based on SVMs using vertices and bends 
as local simplification units, effectively treating line 
simplification as a binary classification problem of 
either retaining vertices or bends. For the method 
using bends as simplification units, the authors sug-
gested calculating five feature values for each vertex 
as its feature vector, followed by employing an SVM 
for binary classification of the vectors. The authors 
also introduced a generation method that involves 
buffer analysis of small-scale maps and large-scale 
maps of candidate bends, the positive – negative 
sample ratio for the bends in the dataset could be 
balanced by adjusting the buffer parameters. The 
simplification result is shown in Figure 10, and the 
quantitative evaluation of simplification result is pre-
sented in Table 3. It can be observed that the SVM- 
based model excels in data compression compared to 
WM but performs worse than our proposed method, 
especially in terms of DTLV and SDC. Moreover, for the 
SVM-based classification model, the generation of 
candidate bends and the setting of feature rules is 
closely related to expert knowledge and cartographer 
experience, which significantly hampers the model’s 
generalization ability.

4.4.4. Quantitative evaluation of algorithms 
performance
Furthermore, to evaluate the accuracy of bend recog-
nition for both methods, a quantitative analysis was 
conducted based on the given 1:250k data. The pro-
posed method automatically calculates the mAP dur-
ing training to assess the performance of target 
recognition, achieving a mAP of 87.17%. However, as 

it is difficult to calculate the mAP for the WM algo-
rithm, commonly used metrics such as F1, precision, 
and recall were used to evaluate its accuracy, as well 
as for the SVM-based method. As shown in Table 4, 
the quantitative evaluation results demonstrate that 
our proposed method outperformed the other three 
algorithms in all three indices. The SVM-based 
method is better than WM and WML, surpassing 
them by more than 30% in terms of F1 but still falls 
short of our proposed method. WML performs slightly 
better than WM, as mentioned earlier, at the cost of 
retaining more than 20% of the data. In conclusion, 
the proposed method clearly holds a significant 
advantage in terms of overall performance and 
shape preservation.

5. Discussion

5.1. Parameter sensitive analysis

5.1.1. Brush width for vector data rasterization
To determine a suitable brush width for our method, 
the brush widths were set to 2, 5, 20, and 50 pixels for 
comparison and analysis. The simplification results 
with different brush widths at an image resolution of 
10 m are shown in Figure 11, in which the blue boxes 
indicate the locations with distinct distortions and 
deviations. Evidently, the polyline with a brush 
width of 5 pixels shows consistent maintenance 
before and after simplification compared with the 
other three brush width results. As shown in Table 5, 
under the same training conditions, the three geo-
metric evaluation metrics of DTLV, SDC, and Ratio_SE 
are better than others when the brush width is 5 
pixels; this indicates that the results of the 

Table 3. Quantitative evaluation results of the proposed method, the WML 

algorithm and the SVM-based method.
Method PCNC (%) DTLV (%) SDC (m) Ratio_SE

Ours 77.99 13.09 85.17 0.01
WML 52.53 13.03 107.26 0.19
SVM-based 72.90 19.23 138.89 0.01

Table 4. Quantitative evaluation results of the proposed 
method, the WM algorithm with different parameters and the 
SVM-based method.

Method F1%) Precision (%) Recall (%)

Ours 79.12 66.51 97.63
WM 36.72 30.74 45.59
WML 37.28 24.48 78.13
SVM-based 71.33 59.41 89.24
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simplification, in this case, have the smallest deforma-
tion; the smallest change in length, area, and coordi-
nate deviation; and the highest model accuracy. 
When the brush width is 2 pixels, the mAP value is 
the lowest (only 82.73%), indicating that many bends 
are not recognized. From the values of PCNC, DTLV, 

SDC, and Ratio_SE, although more points are retained, 
the shape distortion of the simplified polylines is still 
more noticeable than the results obtained using the 
5-pixel-brush-width. When the brush width is 20 or 50 
pixels, the mAP value is lower than that of 5 pixels, 
indicating that many bends are incorrectly detected, 

Figure 11. Simplification results at different brush widths. (a) W = 2 pixels, (b) W = 5 pixels, (c) W = 20 pixels, (d) W = 50 pixels. The 
area marked by the blue boxes is enlarged for display.

Table 5. Quantitative evaluation of the experimental results with different brush widths. 
Emboldened values represent better performance.

Brush width 
(pixels)

PCNC 
(%)

DTLV 
(%)

SDC 
(m) Ratio_SE

mAP 
(%)

2 76.62 13.65 87.33 0.10 82.73
5 77.99 13.09 85.17 0.01 87.17
20 78.14 13.82 330.99 0.11 86.01
50 80.68 16.76 129.08 0.07 85.13
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which leads to large deformations and deviations. 
Through a comparative analysis of the impact on 
brush width settings, the model shows better learning 
performance when the brush width is set to 5 pixels.

5.1.2. Size of input image patch
The effects of two sets of image sizes, 512 × 512 and 
1024 × 1024, on the model simplification perfor-
mance were compared. From Table 6, it can be seen 
that the mAP of the model is 87.17% when the input 
size is 1024 × 1024, whereas the mAP is 78.32% when 
the input size is 512 × 512. Thus, when the input 
image size decreases, the continuity of the polyline 
is interrupted, and the positive labels of each image 
are reduced. This can affect the accuracy of the model 
in the convolutional feature extraction of the polyline 
and lead to many undetected bends. From the quan-
titative analysis results – although more points were 
retained when the input image size was set to 512 ×  
512—the total length deformation and coordinate 
deviation of the simplification results were larger 
than those corresponding to the 1024 × 1024 input. 
Figure 12 shows the simplification results for different 

input image sizes, where the blue boxes indicate 
evident deformations. It can be observed that an 
input size of 1024 × 1024 can better preserve geo-
metric features and shows better simplification 
results.

5.2. Robustness analysis

The simplification rules of different types of polylines 
differ greatly. To verify the generalization effect of the 
proposed method on other types of polylines, con-
tour data were obtained from the Geospatial Data 
Cloud platform (http://www.gscloud.cn/search) for 
simplification experiments. The scales of the data 
before and after the simplification were 1:100k and 
1:250k, respectively. The experimental results show 
that the proposed method achieved a coordinate 
point compression rate of 81.76%; the simplification 
result of the total data and three different contour 
lines is shown in Figures 13 and 14. The proposed 
method retained good shape features of the contour 
lines. In addition, it is worth noting that the training 
labels of the proposed method were generated 

Table 6. Quantitative evaluation of the experimental results with different input image sizes    . 
Emboldened values represent better performance.

Image Size PCNC (%) DTLV (%) SDC (m) Ratio_SE mAP (%)

512 × 512 72.85 13.72 289.90 0.17 78.32
1024 × 1024 77.99 13.09 85.17 0.01 87.17

Figure 12. Simplification results with different input image sizes: (a) 1024×1024 and (b) 512×512. The area marked by the blue boxes 
is enlarged for display.
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according to the DP algorithm. Thus, when the knowl-
edge learned by the model is applied to line simplifi-
cation, the problem of sharp corners persists, similar 
to that in the DP algorithm; nonetheless, this demon-
strates that the proposed method can effectively 
learn the simplification rules embedded in the exist-
ing simplification cases.

5.3. Limitations

This paper introduces a new concept of deep-learning 
-based target detection to detect line bends for auto-
matic vector polyline simplification. However, as 
shown in Figure 14(a), when the labeled data have 
sharp angles, the performance of the proposed 
method is compromised. Although the problem can 
be solved by finding a more suitable training dataset, 
topological errors in the simplification results cannot 
be completely avoided.

To further improve the performance of the pro-
posed method under various scenarios, effective stra-
tegies for handling sharp angles and topological 
errors should be explored. A possible solution is to 

integrate the generation of GANs into the simplifica-
tion process. The generation of new points in the 
necessary sections may solve problems such as sharp-
ness and topological intersections during 
simplification.

Additionally, remote sensing image mapping is 
rich in texture and color features, which can better 
leverage the image feature extraction capability of 
convolutional networks – if our method is used to 
simplify vector polylines extracted from remote sen-
sing images based on boundary tracking, it can better 
facilitate line simplification and enable the implemen-
tation of automatic mapping of images to vectors.

6. Conclusions

Automatic simplification of vector polylines is crucial 
in map generalization. In this paper, we proposed an 
automatic polyline simplification method based on an 
RPN that can be trained end-to-end and integrate 
raster and vector features to achieve effective vector- 
to-vector simplification. The simplified results of the 
coastline show that the proposed method can learn 

Figure 13. Simplification results of contours. (a) Source contours. (b) Simplified results.

Figure 14. Simplification results details. (a)–(c) Different contours simplified by our method. The blue boxes indicate the sharp angles 
that appear after simplification.

GISCIENCE & REMOTE SENSING 15



simplification knowledge and potential rules from 
existing simplification cases without manual interven-
tion, and leverage the vector and raster features of 
polylines to achieve automatic bend detection, as 
well as realize end-to-end and vector-to-vector poly-
line simplification. The experiments also indicate that 
the simplified results have a higher compression ratio 
of coordinate points and lower shape deformation 
and deviation than the results of the traditional WM 
and SVM-based algorithms.

Additionally, considering that there are many 
available remote sensing image datasets, it is 
expected that the proposed method can be applied 
to support the automatic mapping of images to 
vectors, such as shoreline detection. Nevertheless, 
our proposed method still has limitations, such as 
producing bend exaggeration, and thus can be 
further improved in the future to enable wider 
application in the automatic generalization of dif-
ferent geographical objects.
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