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A B S T R A C T   

The presence of clouds prevents optical satellite imaging systems from obtaining useful Earth observation in-
formation and negatively affects the processing and application of optical satellite images. Therefore, the 
detection of clouds and their accompanying shadows is an essential step in preprocessing optical satellite images 
and has emerged as a popular research topic in recent decades due to the interest in image time series analysis 
and remote sensing data mining. This review first analyzes the trends of the field, summarizes the progress and 
achievements in the cloud and cloud shadow detection methods in terms of features, algorithms, and validation 
of results, and then discusses existing problems, and provides our prospects at the end. We aim at identifying the 
emerging research trends and opportunities, while providing guidance for selecting the most suitable methods for 
coping with cloud contaminated problems faced by optical satellite images, an extremely important issue for 
remote sensing of cloudy and rainy areas. In the future, expected improvements in accuracy and generalizability, 
the combination of physical models and deep learning, as well as artificial intelligence and online big data 
processing platforms will be able to further promote processing efficiency and facilitate applications of image 
time series. In addition, this review collects the latest open-source tools and datasets for cloud and cloud shadow 
detection and launches an online project (Open Satellite Image Cloud Detection Resources, i.e., OpenSICDR) to 
share the latest research outputs (https://github.com/dr-lizhiwei/OpenSICDR).   

1. Introduction 

The continuous advancement of satellite Earth observation projects 
in various countries (Harris and Olby, 2001; Neeck et al., 2005; Bézy 
et al., 2007; Shimada, 2014; Gu and Tong, 2015; Guo et al., 2018) has 
increased the number of remote sensing satellites at orbit, which can 
provide massive amounts of data for continuous observations of the 
Earth’s surface. However, as an important source of data for satellite 
Earth observations, optical satellite images are inevitably contaminated 
by clouds due to the physical limitations of sensor imaging systems. The 
International Satellite Cloud Climatology Project estimates a global 
average annual cloud fraction of up to 66% (Zhang et al., 2004), 
therefore, the impacts of cloud coverage cannot be overlooked. The 
presence of clouds impedes optical satellites from acquiring useful in-
formation of the Earth’s surface and affects the usability of images in 
different degrees. In addition, shadows projected by clouds on the 

ground surface also contaminate images. The missing information in 
images caused by clouds and their shadows leads to spatial and temporal 
gaps in satellite Earth observation data (Shen et al., 2015) and may 
cause biases in the subsequent processing and application of images, 
such as land cover/use change monitoring (Zhu and Woodcock, 2014a), 
atmospheric variables estimation (Ma et al., 2021), ocean parameters 
retrieval (Fernandez-Moran et al., 2021). 

Cloud and cloud shadow (CCS) detection is an essential step in the 
preprocessing of optical satellite images. Cloud fraction is an important 
indicator in image metadata items that can be assessed through cloud 
detection and are often used as the basis for data availability. Cloud 
cover assessment filters useful data based on the cloud coverage of im-
ages, thereby improving the efficiency of image data storage and 
transmission (Ghassemi and Magli, 2019; Giuffrida et al., 2020). In 
addition, cloud masks are important products of pre-processing optical 
satellite images that can help maximize the use of the remaining cloud- 
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free areas in the image and foster image applicability, especially in 
cloudy and rainy areas (Li et al., 2019a; Zhang et al., 2021d). However, 
given the common deficiencies of official cloud masks regarding thin 
cloud omission and false detection of bright surfaces, and the fact that 
only a few images have associated cloud masks (e.g., Landsat quality 
assessment band and MODIS cloud mask products), the improvement 
and development of new CCS detection methods are crucial for the 
subsequent processing and accurate application of optical satellite 
images. 

Over the past decades, with the release of massive amounts of optical 
satellite data and the continuous introduction of new data sources, many 
studies have focused on CCS detection for images taken by different 
sensors, and many CCS detection methods have been developed. 
Although the CCS detection literature has been reviewed in previous 
studies, they mainly focus on the categorization of methodologies 
(Goodman and Henderson-Sellers, 1988; Zhu et al., 2019a), cloud 
measuring equipment (Tapakis and Charalambides, 2013), and forms of 
CCS detection results (Mahajan and Fataniya, 2020). To further conduct 
a systematic summary of the current achievements and challenges in this 
field, this study comprehensively reviews the CCS detection literature 
from the features, algorithms, and validation perspectives as shown in 
Fig. 1. Different CCS detection methods are reviewed separately from 
both the features and algorithms perspectives given that algorithms of 
different categories may achieve CCS detection by using the same type of 
features and because algorithms of the same category may also accept 
different types of features. This review also summarizes the main types 
of CCS detection results and their validation. 

On the basis of the involved features, CCS detection algorithms can 
be categorized as methods based on spectral features, spectral-spatial 
features, spectral-temporal features, spectral-spatial–temporal features, 
and multi-source features, which can be extracted from mono-temporal, 
multi-temporal, and multi-source data. From the perspective of the al-
gorithm, these methods can be roughly classified into physical-rule 
based, temporal-change based, variational-model based, and machine- 
learning based algorithms. In addition, CCS detection algorithms usu-
ally can be validated by comparing to manually labeled masks, cloud 
mask products, collocated LiDAR/radar data, or ground-based camera 
data. 

The rest contents are organized as follows. Section 2 conducts the 
literature analysis. Sections 3 to 5 review the CSS detection from the 
perspectives of features, algorithms, and validation. Section 6 highlights 
the problems and prospects in the field. Section 7 concludes the paper. 

2. Literature analysis 

We have conducted a literature survey with Scopus (www.scopus. 
com) on the topic of cloud and cloud shadow detection for optical 

satellite imagery, and the search keywords include cloud/cloud shadow 
AND detection/masking/extraction/screening/identification, which are 
limited to title, keywords, and abstract of the journal articles in English. 
Based on search results as of December 1, 2021, a total of 1425 journal 
papers were returned from the Scopus database. Eventually, there are 
504 papers selected for the literature analysis after manually excluding 
irrelevant articles. Noted that articles related to cloud classification 
which further classify clouds into different types according to cloud 
phase and altitude are not discussed and included in the literature sur-
vey. Besides, to ensure the high quality of the papers used for literature 
analysis, only articles published in formal journals were selected, and 
each paper was manually checked and confirmed to make sure that it fits 
the topic of this review. As shown in Fig. 2, the survey result suggests 
that there is a general increasing trend in the number of published pa-
pers and their citations over the past 37 years from 1985 to 2021, 
especially in the latest decade, which indicates extensive attention was 
paid to this field recently. 

The major countries/region in the field are also listed in Fig. 3 ac-
cording to the number of published papers (>10), which suggest that the 
United States, China, and Europe are the three countries/regions that 
contribute most papers in the field. Besides, considerable research in the 
field has been conducted in Japan, Canada, India, and Australia. 
Furthermore, the major institutions which contribute to > 10 papers are 
also selected and listed in Fig. 4, the results suggest that the top ten 
institutions are all from China and the United States, among them the 
Chinese Academy of Science (CAS) and National Aeronautics and Space 
Administration (NASA) are the two represent institutions of China and 
the United States that contribute to the most papers in the field, 
respectively. The only European institution with more than ten papers in 
the field is the University of Valencia from Spain. Besides, the major 
journals published most papers (>10) in the field are listed in Fig. 5, in 
which the top ten journals are selected according to the total number of 
published papers. The three journals published most papers are Remote 
Sensing, Remote Sensing of Environment, and International Journal of 
Remote Sensing, each with >50 articles in the field. 

Moreover, the number of papers with different types of satellite 
images was counted to determine the major types of images that 
occurred in these 504 papers. The top twelve types of images occurring 
in >10 papers are selected and shown in Fig. 6, which are sorted by the 
number of papers that are selected and counted according to whether 
the satellite keyword occurs in the title, keywords, and abstract of the 
paper. Fig. 6 also shows the distributions of the number of papers rele-
vant to each type of image over the past each 5–6 years periods from 
1985 to 2021. The results indicated that MODIS, Landsat, and AVHRR 
that are all from the United States are the three types of images that are 
most widely used for study in the field over the entire period, benefiting 
from the open data policy (Wulder and Coops, 2014; Harris and 

Fig. 1. CCS detection in terms of features, algorithms, and validation.  
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Baumann, 2015; Zhu et al., 2019b), among them MODIS and Landsat 
series images are still extensively used as the study data in the recent 
decade. In addition, the images of the Sentinel from Europe, VIIRS from 
the United States, Gaofen and Funyun from China, and Himawari from 
Japan are also been heavily used especially over the latest years from 
2016 to 2021, among them the images derived from Chinese Gaofen and 
Japanese Himawari satellites which are launched in the latest decade 
have been widely used in recent studies. 

3. Features 

Depending on the source of input data and the temporal number of 
images involved, the input for CCS detection may include mono- 
temporal, multi-temporal, or multi-source data. In this review, it is 
considered that features can be extracted from spectral, spatial, and 
temporal domains of images. The typical characteristics of cloud/cloud 
shadow from different domains are summarized in Table 1, according to 

Fig. 2. The number of papers and citations on cloud and cloud shadow detection, 1985–2021.  

Fig. 3. Major countries/regions (published > 10 journal papers) in the field.  

Fig. 4. Major institutions (published > 10 journal papers) in the world.  
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which features from different domains can be designed and extracted for 
CCS detection. 

Further, according to the domain of features used for CSS detection, 
CCS detection methods can be classified into spectral-feature based and 

spectral-spatial-feature based methods for mono-temporal images, 
spectral-temporal-feature based and spectral-spatial–temporal-feature 
based methods for multi-temporal images. Besides, multi-source fea-
tures derived from multi-source data are also investigated. Specifically, 
mono-temporal CCS detection methods are commonly used in practical 
applications and mainly distinguish cloud/cloud shadow from clear 
surfaces according to their physical spectral properties or based on 
multiple types of discriminative spectral and spatial domain features 
extracted from a single image. Multi-temporal based methods detect CCS 
by comparing the reflectance differences between the cloud-covered 
image and the selected cloud-free or predicted clear-sky reference 
image given that the occurrence of clouds and cloud shadows will lead to 
abrupt reflectance changes in image time series (Rossow and Garder, 
1993; Jedlovec et al., 2008; Goodwin et al., 2013). 

3.1. Spectral features 

Spectral-feature based methods are usually constructed based on the 
distinctive spectral features of clouds and cloud shadows as shown in 
Table 1. These methods artificially and empirically design feature 
extraction and combine multiple physical spectral rules to perform a 
threshold segmentation of clouds and shadows (Wang and Shi, 2006; 
Luo et al., 2008; Sun et al., 2017). The suitable fixed or dynamic 

Fig. 5. Major journals (published > 10 journal papers) in the field.  

Fig. 6. Major types of satellite images over different periods in the field.  

Table 1 
Typical characteristics of clouds and cloud shadows from different domains.  

Characteristics Clouds Cloud shadows 

Spectral domain High brightness 
White color 
Low temperature 
High elevation 

Low brightness 
Dark color 

Spatial domain Spatially smoothing 
Weak edge 
Relatively low complexity in 
shape 
Sparsity in distribution 
Spatially adjacent to cloud 
shadow 
Similar in shape to cloud 
shadow 

Spatially smoothing 
Weak edge 
Relatively low complexity in 
shape 
Sparsity in distribution 
Spatially adjacent to cloud 
Similar in shape to cloud 

Temporal 
domain 

A sharp increase in 
reflectance 

A sharp decrease in 
reflectance  
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thresholds can be determined through a parametric sensitivity analysis 
or be defined with the aid of ancillary data (Derrien and Le Gléau, 2005; 
Ricciardelli et al., 2008). After obtaining a cloud and shadow mask 
separately, cloud shadows are usually extracted by matching clouds and 
cloud shadows based on their spatial proximity and geometric 
similarity. 

Spectral-feature based methods are widely used in CCS detection. For 
example, the automatic cloud cover assessment (ACCA) algorithm (Irish 
et al. 2006) proposed by the US Geological Survey is used to assess cloud 
fractions in Landsat-7 images. ACCA contains 26 determination condi-
tions based on physical spectral rules that can effectively detect thick 
clouds in the images and has been used as the official cloud detection 
method for supporting image quality assessment. A new method called 
Fmask (function of mask) (Zhu and Woodcock, 2012; Zhu et al., 2015) 
was subsequently introduced for the further screening of thin clouds and 
cloud shadows in Landsat images. Fmask initially builds several spectral 
rules to extract potential cloud areas then calculates the cloud proba-
bilities based on the spectral variability and brightness temperature for a 
dynamic-threshold based segmentation of cloud regions to generate 
cloud masks. Cloud and shadow matching is eventually performed to 
extract cloud shadows from the image. Given its good performances in 
different global validation regions, Fmask has been utilized to assess the 
quality of Landsat 4–8 images. The haze optimized transformation index 
(HOT) (Zhang et al., 2002, 2014) is proposed to highlight clouds from 
clear surfaces and has since been simplified and widely used in cloud 
detection methods (Zhu and Woodcock, 2012; Li et al., 2017; Zhu and 
Helmer, 2018). The HOT index uses the spectral spaces of blue and red 
bands to construct a clear line that separates clouds from clear surface 
pixels, where samples need to be manually selected to determine the 
optimal transformation coefficients. In addition, the cloud displacement 
index (CDI) (Frantz et al., 2018), which is designed based on the 
perspective differences in the three near-infrared bands of Sentinel-2 
images, has been proposed to further distinguish cloud and high- 
bright surfaces and has been integrated into the latest version of 
Fmask (Qiu et al., 2019). 

Although spectral-feature based methods are most commonly used in 
CCS detection, some physical spectral rules need to be artificially 
designed to further distinguish cloud/shadow from non-cloud/non- 
shadow surfaces according to the band setting of a particular image. 
Afterwards, the statistical analysis is usually performed to determine the 
optimal segmentation thresholds. However, the selection of rules or 
thresholds mainly depends on manual empirical judgment and param-
eter sensitivity analysis, which may involve local biases. In addition, 
spectral-feature based methods cannot easily cope with complex sur-
faces due to the phenomenon of homospectral foreign matter (Purkis 
and Klemas, 2013), and the limited number of extracted spectral 
features. 

3.2. Spectral-spatial features 

While spectral-feature based methods only utilize the features of 
each pixel from the spectral domain, spectral-spatial-feature based 
methods further mine the spatial features to enhance feature diversity 
and improve CCS detection performance on complex surfaces of an 
image. 

For example, Li et al. (2017) proposed a multi-feature combined 
(MFC) method to alleviate the problems of bright surface commission 
and thin cloud omission in images with limited spectral information. 
MFC combines spectral, geometric, and texture features for a progressive 
refinement detection of clouds and shadows. MFC was validated on the 
global regions and is considered a benchmark for CCS detection in 
Gaofen-1 WFV images. Moreover, as complements to spectral features, 
multiple artificially designed spatial features, including edge, geometric, 
and texture features, have been used in several studies (Lu, 2007; Hu 
et al., 2015; Bai et al., 2016; Huang et al., 2018; Deng et al., 2019) to 
increase feature diversity and improve the performance of CCS detection 

methods. Generally, the combination of spatial features is beneficial for 
improving CCS detection accuracy, especially for images that only 
contain visible and near-infrared bands. Meanwhile, high-level spatial 
features extracted by deep models further enrich the number and variety 
of features, which can significantly promote the performance of spectral- 
spatial-feature based methods in CCS detection. In this regard, many 
deep learning (DL) based CCS detection methods that are based on 
convolutional neural networks (CNN) (Chen et al., 2020b; Li et al., 
2019b, 2021; Wu and Shi, 2018; Xie et al., 2017; Yang et al., 2019) and 
generative adversarial networks (GAN) (Zou et al., 2019; Mateo-Garcia 
et al., 2020; Wu et al., 2020), have been developed and demonstrated 
higher accuracy than threshold based methods that extract only a 
limited number of features, especially in areas with complex surfaces. 

In spectral-feature and spectral-spatial-feature based methods, the 
extraction of cloud shadow is typically followed by cloud detection (Luo 
et al., 2008; Zhu and Woodcock, 2012; Braaten et al., 2015). The 
shadows in optical satellite images broadly include terrain and cloud 
shadows. Terrain shadows are caused by surface relief, such as mountain 
and building shadows, which can be removed via topographic correction 
in combination with DEM and solar incidence angle (Meyer et al., 1993). 
The locations of cloud shadows in an image are determined by the height 
of clouds and their location in an image and the angles of the satellite 
and sun. Therefore, if these parameters are known, then the location of 
cloud shadows in an image can be approximately predicted by modeling 
the geometric spatial relationship among the cloud, cloud shadow, sun, 
and satellite (Simpson and Stitt, 1998; Simpson et al., 2000). However, 
the height information of clouds in images is difficult to obtain directly, 
and traditional cloud shadow detection methods identify potential cloud 
shadow candidates based on the statistical range of the height of most 
clouds between 200 m and 12 km and on the geometric similarity be-
tween clouds and cloud shadows (Luo et al., 2008). After the potential 
shadow regions are determined, cloud shadows can be isolated within 
the shadow candidate region by iteratively matching clouds and their 
shadows over the height range of clouds. 

3.3. Spectral-temporal features 

The spectral-temporal-feature based methods are mainly based on 
the spectra of individual pixels and their temporal variations. Such types 
of methods usually treat CCS detection as a change detection problem. 
Specifically, pixels in time series with a sudden increase in reflectance 
are more likely to be clouds, and those pixels with a sudden decrease in 
reflectance are likely to be cloud shadows. 

For example, Hagolle et al. (2010) proposed the multi-temporal 
cloud detection (MTCD) method, which detects the steep reflectance 
increase with the blue band and combines the correlation test of 
neighborhood pixels in multi-temporal images to achieve cloud detec-
tion. Results show that MTCD has a stronger ability to discriminate 
clouds compared with methods that are based on either reflectance or 
reflectance ratio. Zhu and Woodcock (2014b) proposed the multi-
Temporal mask (Tmask) method for CCS detection in multi-temporal 
Landsat images. Tmask initially applies the Fmask method to produce 
the initial CCS masks based on each image, models the surface changes 
based on multi-temporal reflectance data, and further improves CCS 
mask by comparing the reflectance differences between the model pre-
dictions and actual observations. The CSS detection results of Tmask 
show significant improvements over those of the mono-temporal Fmask 
method. Lin et al. (2015) developed a multi-temporal cloud detection 
method based on invariant pixels that extracts the invariant pixel from 
multi-temporal images via weighted principal component analysis, 
normalizes multi-temporal images, generates a clear-sky reference 
image of an image covered by clouds based on invariant pixels in 
weighted form, and achieves cloud detection by detecting a large dif-
ference between the generated cloud-free reference image and the 
cloud-covered image. Bian et al. (2016) proposed a cloud and snow 
detection method for multi-temporal Huanjing-1A/1B CCD images that 
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utilizes 30-day image time series to composite a clean reference image 
then extract clouds and snow based on the reflectance difference of blue 
band between the composited reference image and cloud-covered 
image. Results show that multitemporal information helps improve 
cloud and snow detection accuracy. Gómez-Chova et al. (2017) per-
formed nonlinear kernel ridge regression based on selected multiple 
cloud-free images to synthesize the clear-sky reference images of the 
target date, applied cluster analysis on the differential images of cloud- 
covered images and clear-sky reference images, determined whether 
each cluster is a cloud region, and eventually achieved highly accurate 
multi-temporal cloud detection. 

In general, multi-temporal based CCS detection methods usually 
outperform mono-temporal based methods (Cayula and Cornillon, 1996; 
Ricciardelli et al., 2008; Zhu and Woodcock, 2014b). Benefiting from the 
use of multi-temporal information, multi-temporal based methods can 
alleviate the common problems of thin cloud omission and high-bright 
objects commission. However, the use of such methods is usually com-
plex and requires the selection of a clear-sky reference image or the 
construction of a clear-sky reference image by using multi-temporal 
images over a short period, which may generate errors in areas with 
rapid and significant land cover changes. Therefore, such types of 
methods are only suitable for areas with small or periodic land cover 
changes and images with a high temporal resolution. 

3.4. Spectral-spatial-temporal features 

Most of the currently available multi-temporal based CCS detection 
methods only utilize spectral and temporal features based on individual 
pixels (Hagolle et al., 2010; Bian et al., 2016), hence leaving room for 
further improving their accuracy by applying methods that utilize 
spectral, spatial, and temporal domain features simultaneously, espe-
cially in areas with complex land cover. 

For example, Ricciardelli et al. (2008) developed the cloud MAsk 
Coupling of Statistical and Physical method (MACSP) algorithm for 
cloud detection in MSG SEVIRI images, MACSP coupled physical and 
statistical methods, performed temporal sequence analysis based on the 
spectral and texture features of multitemporal images, and achieved a 
good performance when validated against the MODIS cloud mask. Tuia 
et al. (2018) deployed a recurrent neural network to extract spectral- 
spatial–temporal features in time series MSG SEVIRI images for multi- 
temporal cloud detection. This method allows accurate detection of 
clouds at either daytime or nighttime by exploiting their temporal cor-
relation to the sequence images. Zhang et al. (2021) recently developed 
a multi-temporal cloud detection method (MCD-RPCA) that exploits 
spectral-spatial–temporal features. MCD-RPCA applies spectral 
threshold testing, principal component analysis, temporal change 
detection, and morphological processing from spectral, spectral- 
temporal, and spatial perspectives and achieves high-precision cloud 
detection in Landsat-8 images. Similarly, Wang et al. (2021) proposed a 
spatiotemporal integration approach (ST-ACSS) for CCS detection in 
PlanetScope images. ST-ACSS initially applies an adaptive threshold 
approach based on spectral, spatial, and temporal information to 
initialize the preliminary cloud/shadow masks, which are then refined 
via morphological processing and cloud shadow matching to produce 
the final masks. 

Both traditional thresholding and machine learning methods have 
been applied in multi-temporal and mono-temporal cloud detection, 
thereby confirming the necessity of classifying cloud detection from 
both the features/data and algorithm perspectives. In general, on the 
basis of spectral-spatial features, the temporal change features of the 
sequence images further increase the information for CCS detection and 
thereby improve detection accuracy, especially in large areas covered by 
bright surfaces. Moreover, as a complement to spectral-temporal fea-
tures, the utilization of spatial features further improves the spatial ac-
curacy and continuity of cloud detection results, such as by reducing the 
noise in complex urban areas in CCS masks. While spectral- 

spatial–temporal feature combined methods maximize the use of infor-
mation from the image itself, these methods have attracted limited 
research attention yet are deemed most promising for CCS detection in 
image time series. 

3.5. Multi-source features 

In addition to obtaining spectral-spatial–temporal information from 
the image itself, multi-source-feature based methods also mine auxiliary 
information for CCS detection from multi-source data that are spatially 
matched with an image. Such auxiliary data can be taken from multiple 
sources, such as ice/snow data (Rossow and Garder, 1993), surface 
temperature (Frey et al., 2008), DEMs (Huang et al., 2010), synthetic 
cloud-free images (Sun et al., 2016), land cover maps (Sun et al., 2018), 
and water occurrences (Qiu et al., 2019), which are combined with 
cloudy images to enrich features utilized in CCS detection and thus 
improve accuracy. 

CCS detection methods based on multi-source data can be either 
simple thresholding methods or DL-based methods with unique meth-
odological characteristics and advantages. Sun et al. (2016) developed a 
universal dynamic threshold cloud detection algorithm (UDTCDA) 
supported by a constructed MODIS monthly cloud-free reflectance 
database to realize cloud detection for different satellite images. Results 
show that UDTCDA cloud masks have less estimation uncertainty 
compared with MODIS cloud mask products. Given that the construction 
of a cloud-free reflectance database relies on high temporal resolution 
images, the multi-source-feature based methods supported by a prior 
reflectance database are more applicable to images that are acquired by 
geostationary satellites or satellites with short revisit intervals. Qiu et al. 
(2017, 2019) combined DEM and water occurrence as auxiliary data to 
improve the CCS detection accuracy of earlier versions of Fmask in 
specific situations, especially high-altitude mountains and water areas 
where false detection is prone to occur. On this basis, Chen et al. (2021) 
and Wu et al. (2021) developed the DL-based cloud detection method 
that combines geographical auxiliary data by mining geosemantic in-
formation from auxiliary data, including latitude, longitude, time, and 
height data. This method demonstrates a significantly improved cloud 
detection performance in cloud-snow coexistence scenarios. 

Generally, multi-source-feature based methods outperform mono- 
temporal methods by mining additional useful information from auxil-
iary data. Although these methods show potential in improving CCS 
detection accuracy in extreme cases, the additional need for auxiliary 
data limits their wide application. Moreover, given that auxiliary data 
usually have low resolution, these methods are more suitable for low- 
and medium-resolution images. 

4. Algorithms 

Various algorithms for CCS detection have been developed, which 
can be broadly classified into physical-rule based, temporal-change 
based, variational-model based, and machine-learning based algo-
rithms. This review categorizes CCS detection algorithms from both the 
feature and algorithm perspectives, because we think features and al-
gorithms do not have a one-to-one correspondence relationship and 
different types of algorithms can utilize the same types of features/data 
and vice versa. The selected CCS detection algorithms are listed in 
Table 2, which also provides the input data for each algorithm. The 
performance of these algorithms for images of different satellites, such 
as Landsat (Foga et al., 2017) and Sentinel-2 (Baetens et al., 2019; 
Sanchez et al., 2020; Tarrio et al., 2020; Zekoll et al., 2021), has also 
been compared. Some open-source CCS detection tools are presented in 
Appendix A. 

4.1. Physical-rule based algorithms 

Physical-rule based‘ algorithms set rules for threshold segmentation 
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Table 2 
Selected CCS detection algorithms for multi-source image data.  

Algorithms References Name of 
algorithm 

Applicable 
imagery 
(mainly) 

Input data 

Physical-rule 
based 
algorithms 

Saunders and 
Kriebel, 1988; 
Gesell, 1989 

APOLLO AVHRR Mono- 
temporal 
image 

Liu et al., 
1995 

N/A GMS-4 Mono- 
temporal 
image, 
microwave 
satellite data 

Simpson 
et al., 1998 

SMC ATSR Mono- 
temporal 
image 

Lutz, 1999 MPEF Meteosat-6, 
GOES-8 

Mono- 
temporal 
image 

Derrien and 
Le Gléau, 
2005 

SAFNWC MSG SEVIRI Mono- 
temporal 
image 

Hutchison 
et al., 2005 

VCM VIIRS Mono- 
temporal 
image 

Irish et al., 
2006 

ACCA Landsat-7 Mono- 
temporal 
image 

Wang and 
Shi, 2006 

N/A MODIS, Sea- 
WiFS 

Mono- 
temporal 
image 

Luo et al., 
2008 

CCRS MODIS Mono- 
temporal 
image 

Le Hégarat- 
Mascle and 
André, 2009 

N/A SPOT-4 
HRVIR 

Mono- 
temporal 
image 

Huang et al., 
2010 

N/A Landsat TM/ 
ETM+

Mono- 
temporal 
image, DEM 

Oreopoulos 
et al., 2011 

LTK Landsat-7 Mono- 
temporal 
image 

Scaramuzza 
et al., 2012 

FT-ACCA/ 
AT-ACCA 

Landsat-8 Mono- 
temporal 
image 

Zhu and 
Woodcock, 
2012 

Fmask Landsat 4–8, 
Sentinel-2 

Mono- 
temporal 
image 

Fisher, 2013 SPOTCASM SPOT-5 HRG Mono- 
temporal 
image 

Braaten et al., 
2015 

MSScvm Landsat 1–5 
MSS 

Mono- 
temporal 
image, DEM 

Sun et al., 
2016 

UDTCDA MODIS, 
Landsat-8 

Mono- 
temporal 
image, 
Reference 
reflectance 

Li et al., 2017 MFC Gaofen-1 
WFV 

Mono- 
temporal 
image 

Mei et al., 
2017 

XBAER-CM ENVISAT 
MERIS 

Mono- 
temporal 
image 

Frantz et al., 
2018 

FmaskCDI Sentinel-2 Mono- 
temporal 
image 

Qiu et al., 
2019 

Fmask 4.0 Landsats 4–8, 
Sentinel-2 

Mono- 
temporal 
image, DEM, 
Water 
occurrence 

Fernandez- 
Moran et al., 
2021 

N/A Sentinel-3 Mono- 
temporal 
image, DEM  

Table 2 (continued ) 

Algorithms References Name of 
algorithm 

Applicable 
imagery 
(mainly) 

Input data 

Temporal- 
change 
based 
algorithms 

Rossow and 
Garder, 1993 

ISCCP Satellite 
infrared and 
visible 
radiances 

Multi- 
temporal 
images, ice/ 
snow data, 
other 
ancillary data 

Cayula and 
Cornillon, 
1996 

N/A AVHRR SST Multi- 
temporal 
images 

Jedlovec 
et al., 2008 

BCT GOES-12 Multi- 
temporal 
images 

Ricciardelli 
et al., 2008 

MACSP MSG SEVIRI Multi- 
temporal 
images 

Lyapustin 
et al., 2008 

MAIAC-CM MODIS Multi- 
temporal 
images 

Hagolle et al., 
2010 

MTCD Landsat, 
Formosat-2 

Multi- 
temporal 
images 

Jin et al., 
2013 

N/A Landsat 
ETM+

Multi- 
temporal 
images 

Goodwin 
et al., 2013 

N/A Landsat Multi- 
temporal 
images 

Liu and Liu, 
2013 

IBCD MODIS Multi- 
temporal 
images 

Zhu and 
Woodcock, 
2014b 

Tmask Landsat 
images 

Multi- 
temporal 
images 

Bian et al., 
2016 

N/A Huanjing-1A/ 
B CCD 

Multi- 
temporal 
images 

Mateo-García 
et al., 2018 

MCM-GEE Landsat-8 Multi- 
temporal 
images 

Zhu and 
Helmer, 2018 

ATSA Landsat-4/8, 
Sentinel-2 

Multi- 
temporal 
images 

Candra et al., 
2019 

MCM Landsat-8 Multi- 
temporal 
images, DEM 

Qiu et al., 
2020 

Cmask Landsat-8 Multi- 
temporal 
images 

Zhang et al., 
2021 

MCD-RPCA Landsat-8 Multi- 
temporal 
images 

Wang et al., 
2021 

STI-ACSS PlanetScope Multi- 
temporal 
images 

Variational- 
model 
based 
algorithms 

Chen et al., 
2019 

TVLRSDC Landsat-8, 
Sentinel-2 

Multi- 
temporal 
images 

Duan et al., 
2020 

TSSTO Gaofen-1 
WFV, SPOT-5 

Multi- 
temporal 
images 

Machine- 
learning 
based 
algorithms 
* 

Yhann and 
Simpson, 
1995 

N/A (NN 
based) 

AVHRR Mono- 
temporal 
image 

Ghosh et al., 
2006 

N/A (Fuzzy 
rule based) 

Meteosat-5 Mono- 
temporal 
image 

Scaramuzza 
et al., 2012 

Expanded 
AT-ACCA 
(NN based) 
C5 CCA 
(Decision 
tree based) 

Landsat-8 Mono- 
temporal 
image 

Hughes and 
Hayes, 2014 

SPARCS (NN 
based) 

Landsat 
images 

(continued on next page) 
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based on the physical properties of clouds/cloud shadows to achieve 
their detection. These algorithms design discriminative features and 
determine the optimal thresholds to achieve the masking of cloud/ 
shadow as expressed in Eq. (1). Given the presence of foreign matter in 
the same spectrum, accurately extracting CCS is difficult by relying only 
on a single spectral feature, and CCS detection can be more accurately 
achieved by combining multiple types of features and considering the 
geometric-spatial relationship between clouds and cloud shadows. 

R > t1 and/or R < t2 (1)  

where R can be the designed rules based on a single band, band com-
bination, or derived indices, etc. t1 and t2 are fixed/dynamic thresholds 
for cloud/cloud shadow segmentation. 

Physical-rule based algorithms are designed according to the band 
settings and spectral characteristics of a particular sensor in which 
cloud/shadow masks can be obtained by using the multiple tests 
thresholding algorithm based on a single band reflectance, band ratios, 
and differences. The significant physical characteristics of clouds in 
optical satellite images include high brightness, white color, low tem-
perature, and high elevation, whereas the significant physical charac-
teristics of cloud shadows include low brightness and dark color (Qiu 
et al., 2019). In addition, given that the spectral range near 1.38 μm has 
significant atmospheric water vapor absorption, this range is 

particularly sensitive to cirrus clouds located above atmospheric water 
vapor and can thus be used as a cirrus channel for cirrus cloud detection 
(Gao et al., 1993; Qiu et al., 2020). Given that physical-rule based al-
gorithms usually have relatively robust performance and high effi-
ciency, they are widely used to generate official cloud mask products for 
assessing the quality of satellite images, such as the cloud mask algo-
rithm (Ackerman et al., 1998; Platnick et al., 2003; Frey et al., 2008) for 
MODIS images, ACCA (Irish et al., 2006), and Fmask (Zhu and Wood-
cock, 2012; Zhu et al., 2015) for Landsat images and Sen2Cor (Sentinel-2 
atmospheric correction) (Main-Knorn et al., 2017) for Sentinel-2 images. 
The cloud detection accuracy of these algorithms can be improved by 
using DEM and clean surface reflectance data as auxiliary data, such as 
MSScvm (Landsat MSS clear-view-mask) (Braaten et al., 2015) and 
UDTCDA (Sun et al., 2016). For high-resolution images with insufficient 
spectral information, spectral, geometric, and textural features, usually 
need to be combined to further improve the CCS detection results, such 
as MFC (Li et al., 2017). A unified spectral index and spatial matching 
based algorithm called CSD-SI (cloud/shadow detection based on 
spectral indices) was subsequently proposed for CCS detection in mul-
tispectral and hyperspectral images with parameters that need to be 
adjusted when applied to different types of images (Zhai et al., 2018). 
Particularly, Fernandez-Moran et al. (2021) took advantage of the 
viewing angle differences and the displacement of clouds between 
Sentinel-3 SLSTR nadir and oblique images to estimate cloud top heights 
and to accurately detect clouds and their shadows through projection. 

Although the physical-rule based algorithms are widely used in 
practice and can achieve high CCS detection accuracy in simple scenes, 
such as vegetated areas, the selection of physical rules and optimal pa-
rameters in these algorithms relies on empirical determination and 
parameter sensitivity analysis, thereby introducing difficulties in 
achieving parameter adaption and global optimality, and resulting in 
different degrees of cloud cover estimation bias in cloud masks. In 
addition, the limited physical spectral information and number of 
feature rules lead to a lower accuracy of physical-rule based algorithms 
in complex scenes, such as snow/ice covered areas. 

4.2. Temporal-change based algorithms 

Temporal-change based algorithms achieve cloud/cloud shadow 
identification by detecting abrupt changes in image time series. The 
temporal changes in clear-sky surfaces are assumed to be relatively 
smooth compared with the sudden changes in surface reflectance caused 
by clouds/cloud shadows (Hagolle et al., 2010; Liu and Liu, 2013). Such 
algorithms often use synthesized or predicted cloud-free images/pixels 
as reference and mark areas with significant reflectivity differences from 
the original image as potential areas of clouds/cloud shadows, this 
process can be expressed as shown in Eq. (2). 

(R − R*) > t1 and/or (R − R*) < t2 (2)  

where R and R* are band reflectances of original images and corre-
sponding cloud-free images, t1 and t2 are spectral differencing thresh-
olds for the identification of cloud/cloud shadow. 

Clear-sky image synthesis and temporal fitting are commonly used to 
obtain cloud-free reference data, which can be considered as approxi-
mate estimates of surface reflectance in cloud-covered areas. On the one 
hand, the cloud-free reference image/pixel can be acquired by selecting 
the most recent cloud-free image/pixel (Jin et al., 2013; Tang et al., 
2013; Candra et al., 2019) and finding the minimum value in the 
sequence (Liu and Liu, 2013). This image/pixel is then synthesized via 
median filtering (Goodwin et al., 2013), predicted via linear and 
nonlinear regression (Gómez-Chova et al., 2017), or estimated using the 
low-rank matrix decomposition model (Zhang et al., 2021). The gener-
ated cloud-free reference image/pixel can then be compared pixel by 
pixel with the target cloud-covered image/pixel to identify clouds and 
their shadows in a change detection manner. On the other hand, 

Table 2 (continued ) 

Algorithms References Name of 
algorithm 

Applicable 
imagery 
(mainly) 

Input data 

Mono- 
temporal 
image 

Yuan and Hu, 
2015 

N/A (SVM 
based) 

RapidEye, 
Landsat 

Mono- 
temporal 
image 

Hollstein 
et al., 2016 

cB4S2 
(Bayesian 
based) 

Sentinel-2 Mono- 
temporal 
image 

Xie et al., 
2017 

N/A (CNN 
based) 

High- 
resolution 
images 

Mono- 
temporal 
image 

Tuia et al., 
2018 

N/A (RNN 
based) 

MSG SEVIRI Multi- 
temporal 
images 

Li et al., 
2019b 

MSCFF (CNN 
based) 

Gaofen-1, 
Landsat-7/8, 
Google Earth 
images 

Mono- 
temporal 
image 

Wu et al., 
2020 

SAGAN 
(GAN based) 

Sentinel-2 Mono- 
temporal 
image 

Li et al., 2020 WDCD (CNN 
based) 

Gaofen-1, 
Ziyuan-3 

Mono- 
temporal 
image 

Poulsen et al., 
2020 

N/A (NN 
based) 

Sentinel-3 
SLSTR 

Mono- 
temporal 
image 

Chen et al., 
2020a 

CECD (RF 
based) 

Landsat-8, 
Sentinel-2 

Mono- 
temporal 
image 

Zhang et al., 
2021c 

CFCA-Net 
(CNN based) 

Gaofen-1 Mono- 
temporal 
image 

Wu et al., 
2021 

GeoInfoNet 
(CNN based) 

Gaofen-1 Mono- 
temporal 
image, DEM 

Li et al., 2021 CD-FM3SF 
(CNN based) 

Sentinel-2 Mono- 
temporal 
image  

* Abbreviations for machine learning algorithms. SVM: Support Vector Ma-
chine; NN: Neural Network; RF: Random Forest; CNN: Convolutional Neural 
Network; RNN: Recurrent Neural Network; GAN: Generative Adversarial 
Network. 
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temporal fitting algorithms have been used for cloud detection in image 
time series. These algorithms include the time series model (Zhu and 
Woodcock, 2014b; Qiu et al., 2020), which fits the time series change 
trends of individual pixels in image time series based on their valid 
observations and achieves CCS detection by analyzing their reflectance 
differences from the original time series reflectance. These algorithms 
usually require an initial cloud/cloud shadow mask to label the validity 
of pixels and better fit their time series curve. 

Temporal-change based algorithms are essentially multi-temporal 
based CCS detection algorithms that require a certain quality and 
quantity of input images yet show significant advantages over single- 
temporal algorithms, especially in image time series applications. Spe-
cifically, benefiting from the sensitivity of the temporal-change based 
algorithms to changes in surface reflectance due to clouds or cloud 
shadows, this type of algorithm has an inherent strength for the detec-
tion of thin clouds and shadows, and shows a strong ability to distin-
guish clouds from bright surfaces in urban areas. 

4.3. Variational-model based algorithms 

Variational-model based algorithms construct a variational model 
with a priori constraints based on the prior knowledge of CCS compo-
nents in an image and the cloud-free image components. These algo-
rithms achieve cloud detection through an optimal solution of the 
variational model. In general, the CCS components in an image are 
spatially smooth and sparse. In addition, cloud-free image time series 
are smooth in the temporal domain and have low-rank properties due to 
their strong correlation. On the basis of these characteristics, a varia-
tional model for CCS detection based on a priori information constraints 
can be constructed, of which a typical example is given in Eq. (3). 

min
C ,B

λ1J1(C )+ λ2J2(B ), s.t.I = C +B ,B ≥ 0 (3)  

where I denotes the cloudy sequence images, C and B are their cloud/ 
shadow component and cloud-free image component, J1 and J2 are the 
regularized terms which are constructed to characterize the prior 
knowledge of C and B , including smooth, sparse, low rank, etc. 

Variational-model based CCS detection algorithms have received 
limited research attention in recent years, and most of them implement 
CCS detection in the process of CCS removal at the same time. Chen et al. 
(2019) developed a total variation regularized low-rank sparsity 
decomposition model for simultaneous CCS detection and removal in 
multi-temporal images. This model adapts sparsity decomposition and 
total variation regularization to separate CCS components and guide the 
compensation of cloud/cloud shadow covered areas in each image. 
Duan et al. (2020) proposed a thick cloud removal algorithm based on 
the constructed temporal smoothness and sparsity regularized model, in 
which CCS detection can be achieved through a threshold segmentation 
of separated cloud/cloud shadow elements from multi-temporal images. 
Both these algorithms obtain binarized cloud/cloud shadow masks by 
thresholding decomposed CCS components, which can be acquired by 
optimally solving the constructed variational model. 

Although the variational-model based algorithms show promise in 
integrated cloud detection and removal, these algorithms require input 
data with a certain quality and thereby may not perform well in extreme 
cases, such as images with continuous and heavy cloud coverage, and 
their specific accuracy in different scenarios needs to be further vali-
dated on a large scale. In addition, these algorithms only utilize prior 
knowledge in the spatial and temporal domains and ignore spectral 
domain information, thereby leaving room for further improvement. 

4.4. Machine-learning based algorithms 

Machine-learning based approaches treat image CCS detection as an 
image classification problem by constructing a suitable classification 
model and iteratively optimizing the model parameters based on large- 

scale training data. Therefore, the pre-trained model has the capability 
of CCS detection, and the interference process can be expressed in a 
simplified form by Eq. (4). The key to this kind of algorithm is to select 
representative training data, design a reasonable model architecture 
function, use the appropriate training strategies to optimize the model 
parameters, and make the model have certain generalized application 
capabilities. 

Mask = F(x, w) (4)  

where F denotes the pre-trained classification model, x and w are the 
images to be processed and model parameters learned by minimizing the 
loss function, respectively. 

Traditional machine learning algorithms, such as classical Bayesian 
(Hollstein et al., 2016), fuzzy clustering (Key et al., 1989; Ghosh et al., 
2006; Bo et al., 2020), random forest (Ghasemian and Akhoondzadeh, 
2018; Fu et al., 2019; X. Chen et al., 2020), support vector machine 
(SVM) (Li et al., 2015; Yuan and Hu, 2015; Ishida et al., 2018; Joshi 
et al., 2019), and neural network (Lee et al., 1990; Yhann and Simpson, 
1995; Walder and Maclaren, 2000; Jang et al., 2006; Hughes and Hayes, 
2014; Poulsen et al., 2020), have been widely used to detect CCS in 
different types of images. For example, Hughes and Hayes (2014) 
developed the spatial procedures for automated removal of cloud and 
shadow (SPARCS) algorithm to detect CCSs in Landsat images by 
training a neural network. Yuan and Hu (2015) constructed bag-of- 
words models based on segmented super pixels then trained SVM clas-
sifiers to distinguish cloud regions from non-cloud ones. Bai et al. (2016) 
and Ishida et al. (2018) combined SVM classifiers to achieve cloud 
detection for high-resolution satellite and MODIS images, respectively, 
and improved their applicability in multiple cloud detection conditions 
with a small number of training samples. 

Machine-learning based algorithms take the spectral features of in-
dividual pixels or locally segmented regions in an image as model inputs 
and output category probabilities or labels that correspond to pixels or 
local regions. Adding spatial features to the input of the machine 
learning models and increasing feature diversity by introducing spatial 
information can also improve the CCS detection accuracy of these al-
gorithms. Although traditional machine learning algorithms can achieve 
better CCS detection results with the support of sufficient training data, 
their ability to mine spatial features is still limited, and feature diversity 
cannot sufficiently cope with CCS detection in complex scenarios. 

With the continuous development of machine learning technology, 
as a subset of machine learning, DL has witnessed significant break-
throughs in recent years and has been successfully applied in the remote 
sensing field (Zhu et al., 2017; Mountrakis et al., 2018; Yuan et al., 
2020). Benefiting from their advantages in feature representation, DL- 
based algorithms have achieved the highest accuracy in image classifi-
cation, and their accuracy is constantly being improved with the 
advancement of new techniques (Li et al., 2018). These algorithms also 
do not require a manual design of feature extraction and instead learn 
discriminative spatial and semantic features directly from training 
samples. The deep layers in the network significantly increase the 
number and diversity of features extracted by the model, thereby the 
classification accuracy. In recent years, DL-based algorithms have been 
widely used in CCS detection for optical satellite images, including CNN 
(Zi et al., 2018; Chai et al., 2019; Choubin et al., 2019; Ghassemi and 
Magli, 2019; Shendryk et al., 2019; Segal-Rozenhaimer et al., 2020; Wu 
et al., 2021), GAN (Zou et al., 2019; Mateo-Garcia et al., 2020; Wu et al., 
2020), recurrent neural network (Tuia et al., 2018; Mateo-Garcia et al., 
2019). 

For example, Mateo-Garcia et al. (2017) designed a simple CNN 
model for cloud detection in multispectral Proba-V images and sug-
gested that CNN has greater potential for cloud detection than classical 
machine learning algorithms. Xie et al. (2017) used a pre-trained CNN 
model to label different segmented regions based on image segmenta-
tion to detect thick clouds, thin clouds, and cloud shadows. Zhan et al. 

Z. Li et al.                                                                                                                                                                                                                                        



ISPRS Journal of Photogrammetry and Remote Sensing 188 (2022) 89–108

98

(2017) used a CNN model to differentiate clouds from snow in satellite 
images. To alleviate the CCS detection problem in multi-sensor images, 
Li et al. (2019b) proposed a DL-based CCS detection algorithm based on 
multi-scale convolutional feature fusion (MSCFF), which demonstrated 
its applicability to multiple types of images worldwide and achieved 
promising results. In general, DL-based algorithms for CCS detection are 
applicable to different types of images, and models with different 
network architectures have been designed to achieve the desired results, 
such as Cloud-Net (Mohajerani and Saeedi, 2019) and MF-CNN (multi-
scale features-CNN) (Shao et al., 2019) for Landsat images, CD-FM3SF 
(cloud detection method fusing multiscale spectral and spatial fea-
tures) (Li et al., 2021) and KappaMask (Domnich et al., 2021) for 
Sentinel-2 images, WDCD (weakly supervised deep learning-based cloud 
detection) (Li et al., 2020), DABNet (deformable contextual and 
boundary weighted network) (He et al., 2021), and GeoInfoNet 
(geographic information driven network) (Wu et al., 2021) for Gaofen 
images. 

Particularly, dark channel prior (Zhang et al., 2021a) and geographic 
information (Chen et al., 2021; Wu et al., 2021) have been introduced in 
DL-based CCS detection algorithms to further enhance the ability of 
deep models to cope with thin clouds detection and complex land 
covers, especially in cloud-snow coexistence areas (Chen et al., 2021; 
Guo et al., 2021b) wherein the advantages of DL-based algorithms are 
further highlighted. The use of transferring learning (Mateo-García 
et al., 2020) and weakly supervised learning (Zou et al., 2019; Li et al., 
2020) to address the limitations of DL-based algorithms in requiring a 
large amount of cloud detection labeled samples has also been explored. 
Domain adaptation (Mateo-Garcia et al., 2020; Guo et al., 2021a) 
techniques have been used to reduce the labeling costs and to cope with 
the generalizability problem of applying deep cloud detection models 
for images across different sensors. Furthermore, simultaneous cloud 
detection and removal based on DL are also investigated (Ji et al., 2021). 

Machine-learning based algorithms can achieve CCS detection away 
from manually designed features and learn optimal model parameters 
from the training data. Benefiting from the feature representation ad-
vantages of deep neural networks, machine-learning based algorithms, 
especially DL-based algorithms, can realize high-accuracy CCS detection 
and outperform other types of algorithms in complex surface scenarios, 
such as urban and snow/ice covered areas. However, these algorithms 

mostly ignore the physical properties of clouds and cloud shadows, their 
spatial proximity, and their geometric similarity and are heavily 
dependent on training data, thereby introducing serious biases in the 
generalized application of machine learning models when the training 
data are either insufficient or unrepresentative. Therefore, future DL- 
based CCS detection algorithms need to learn from the experiences of 
the physical-rule based algorithms and focus on addressing issues 
related to large training sample requirements and cross-sensor 
applications. 

Literature analysis was also conducted on different types of CCS 
detection algorithms over different periods, the results shown in Fig. 7 
confirmed that physical-rule algorithms benefiting from their simplicity 
and efficiency are the most popular type of CCS detection algorithms, 
which have been heavily studied at different periods. In addition, the 
results shown in Fig. 7 also indicated that DL-based methods as a branch 
of ML-based algorithms have gained much attention in recent years, 
benefiting from the great progress of DL in tasks such as image classi-
fication and the release of a large number of open-source datasets. 
Moreover, temporal-changes based algorithms have gradually received 
more attention in the past periods owing to the increase in satellite data 
sources and the widespread use of image time series. Notably, 
variational-model based algorithms have been developed in recent 
years, and it can be expected that such types of algorithms will have 
broader application potentials for integrated cloud detection and 
removal in multi-temporal images. 

5. Validation 

The validation methods of CCS algorithms are related to the type of 
their results, which vary along with the requirements and purpose of 
practical applications, and broadly include the following three types.  

• Specific categories: The common output of CCS detection is specific 
classification results, in which each pixel is assigned a specific 
category, for example, cloud, cloud shadow, and clear sky (Braaten 
et al., 2015; Li et al., 2017; Zhu and Helmer, 2018). Furthermore, the 
definition of categories can be highly flexible and detailed, the final 
output may contain cloud, haze, smoke, and clear sky when focusing 
on contaminations in images (Hutchison et al., 2008; Chen et al., 

Fig. 7. Types of CCS detection algorithms developed in different periods.  
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2016; Zhang et al., 2019), or may contain cloud and other underlying 
surface types, such as vegetation, snow, and water, when concen-
trating on subsequent application (Luo et al., 2008; Liu and Liu, 
2013).  

• Category certainty degrees: The CSS detection results can also be 
expressed in terms of the degree of category certainty, as there are 
uncertainties in results due to the presence of mixed pixels, espe-
cially for low-resolution images. For example, the MODIS cloud mask 
algorithm (Ackerman et al., 1998; Platnick et al., 2003; Frey et al., 
2008) labels each pixel as one of four cloud and non-cloud certainty 
degrees, namely, cloud, probably cloud, probably clear, and clear. 
These results tend to be collections of threshold tests based on 
physical or statistical models (Ackerman et al., 2010; Ishida and 
Nakajima, 2009), in which most results are a combination of confi-
dence levels of independent tests rather than definite classes.  

• Cloud types: Clouds can be classified from different perspectives, 
such as thickness, cloud phase, and altitude, and have infinite pos-
sibilities in terms of form, composition, and state of the location of 
existence (Lamb and Verlinde, 2011). In terms of cloud thickness, 
clouds can be simply classified into opaque and thin, with their 
thickness closely related to their form and location. Cloud thickness 
is one aspect that influences the tests deployed in cloud detection 
algorithms, and further research on cloud classification based on 
cloud phases and altitudes is specialized and closely related to 
nephology. 

The validation of CCS detection algorithms relies on standard 
reference results, their accuracy can be evaluated by measuring the 
agreements and differences between the output and standard reference 
results, and the detection errors can be obtained as in general image 
classification methods. This review mainly focuses on the standard 
reference results for the algorithm quantitative validation, which 
broadly include four means, namely, comparing to manually labeled 
masks, comparing to cloud mask products, comparing to collocated 
LiDAR/radar data, and comparing to ground-based camera data. The 
selection of standard reference results for algorithm validation depends 
on the types of images and the availability of standard reference results. 

5.1. Comparing to manually labeled masks 

Comparing to manually labeled masks is a common validating al-
gorithm for CCS detection, which draws cloud borders by visual inter-
pretation (Li et al., 2019b), semi-automatically labeling pixels through 
threshold segmentation (Sun et al., 2020), computer vision annotation 
tools (Domnich et al., 2021), and visual checking and correction (Yu 
et al., 2020). CCS labels can also be obtained through cloud identifica-
tion with composited low-resolution cloud-free images (Chen et al., 
2020a). With the increasing interest and demand in the field of cloud 
detection, a growing number of open-source cloud detection datasets are 
being released, which contribute to the development of the field. Sample 
CCS detection datasets include L7_Irish (Scaramuzza et al., 2012; USGS., 
2016a) and L8_Biome (Foga et al., 2017; USGS., 2016b) for Landsat 
images, Sentinel-2 Cloud Mask Catalogue (Francis et al., 2020) and 
WHUS2_CD (Li et al., 2021) for Sentinel-2 images, and GF1_WHU (Li 
et al., 2017, 2019b) and Levir_CS (Wu et al., 2021) for Gaofen-1 images. 
A manual label based validation of CCS detection results is straightfor-
ward and reliable yet requires a considerable amount of manual labor. In 
this review, open-source cloud detection datasets are collected as listed 
in Appendix B. To benefit researchers in the field of CCS detection, a 
project on open satellite image cloud detection resources (OpenSICDR) 
was launched to share the latest research outputs online (https://github. 
com/dr-lizhiwei/OpenSICDR). 

5.2. Comparing to cloud mask products 

The official cloud mask products delivered by satellite agencies have 

relevant high reference values for the evaluation of newly developed 
algorithms given that manual labels are not always available for 
different types of images. For example, MOD35 (MYD35 for Aqua) is a 
representative official cloud mask product with stable performance and 
relatively high accuracy in different underlying surfaces (Ackerman 
et al., 2010) that reports an approximately 83% agreement between 
MODIS and Active Remotely Sensed Cloud (ARSCL) products (Ackerman 
et al., 2008). The MOD35 product is proven to be reliable and satisfac-
tory through validation with the data of four seasons and different 
scenarios and is considered a benchmark or standard reference cloud 
mask in newly developed algorithms, such as the MACSP algorithm 
(Ricciardelli et al., 2008). The SADIST cloud screening products for 
ATSR images, the CLAAS-2 dataset for MSG SEVIRI images (Drönner 
et al., 2018), and the NSMC cloud masks for Fengyun images (Fu et al., 
2019) have also been used as reference cloud mask products for relative 
accuracy evaluation. Despite the convenience of evaluation algorithms 
based on cloud mask products, relative to the reference cloud mask 
products, the qualitative evaluation results obtained based on cloud 
mask products are not very reliable and are susceptible to the accuracy 
of the reference cloud mask products. 

5.3. Comparing to collocated LiDAR/radar data 

In addition to manual cloud labels, ground, aircraft, and satellite 
based LiDAR/radar observation data collocated with optical images can 
be used to validate cloud detection results. These data have obvious 
advantages and broad application prospects and are usually more 
convincing than official cloud mask products whose accuracy is affected 
by some misclassified pixels. For example, the Cloud-Aerosol Lidar with 
Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite and 
the Cloud Profiling Radar (CPR) onboard CloudSat are examples for 
providing the LiDAR observation data that are extensively applied to 
validate cloud detection methods (Ackerman et al., 2008; Ricciardelli 
et al., 2008; Sun-Mack et al., 2010; Várnai and Marshak, 2012; Mei et al., 
2017). The active laser technique provides accurate cloud layer and 
vertical feature information (Kittaka et al., 2011; Heidinger et al., 2016) 
that can be effectively used for identifying cloud pixels and thus can be 
used as reference cloud labels for the accurate evaluation of cloud 
detection methods (Liu et al., 1995; Heidinger et al., 2016; Wang et al., 
2016; Poulsen et al., 2020). Nevertheless, the accuracy of cloud shadow 
cannot be evaluated with such means for validation. Besides, the biases 
in the collocation of LiDAR/radar data and optical images negatively 
affect the accuracy of validation, and the spatial resolution and the data 
coverage limitations impede the wide application of LiDAR/radar 
observation data in cloud detection accuracy evaluation. 

5.4. Comparing to ground-based camera data 

As an alternative scheme, the whole sky images acquired from 
ground-based cameras can be used to generate reference cloud masks for 
the validation of CCS detection algorithms. In the generation process, 
the whole sky images should be geo-referenced to optical satellite im-
ages, and then reference cloud masks can be obtained through the seg-
mentation of the aligned whole sky images. For example, two MODIS 
cloud detection algorithms are evaluated based on the ground-based sky 
camera data derived cloud masks, which are produced using sky index 
and bright index (Letu et al., 2014). In addition, an experimental cloud 
detection dataset was created recently based on the ground-based 
camera data for the validation of CCS detection algorithms developed 
for Sentinel-2 and Landsat-8 images, in which the designed system in-
cludes cameras and automatic processing algorithms is expected to be 
installed at multiple sites worldwide (Skakun et al., 2021). While the 
validation of cloud detection algorithms using ground-based camera 
data reduces the time of generating a reference dataset and the subjec-
tivity in labeling clouds, the accuracy of reference cloud masks is easily 
affected by the registration and cloud segmentation of whole sky images. 
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6. Problems and prospects 

Although the current CCS detection algorithms for optical satellite 
images have witnessed much progress, some problems remain unsolved 
or need to be better resolved. This review summarizes the current 
problems faced in CCS detection and prospects in terms of accuracy, 
generalizability, efficiency, and image time series processing and 
applications. 

6.1. Common problems and accuracy improvement for CCS detection 

The results of thin cloud detection have a significant impact on the 
accuracy of different cloud detection algorithms. Large-area thin clouds 
that are similar to haze or translucent clouds in the transition region 
between thick clouds and the clear sky surface have large variability due 
to different underlying surfaces, hence impeding an accurate detection. 
Moreover, high bright surfaces, including snow/ice, built-up areas, and 
bright water bodies, can be easily misidentified in cloud detection due to 
their spectral properties similar to clouds, especially in areas with large- 
area snow/ice, given the difficulty in extracting identifiable features 
from the central region of large clouds and bright surfaces but with slight 
differences in the edge regions. Moreover, given the varying geometric 
characteristics of clouds in an image, the limited block size of the input 
image and the receptive field of the deep model, CNN-based algorithms 
cannot easily separate large-area clouds from non-cloud bright surfaces 
completely and comprehensively. To address these problems, the com-
bination of object-oriented image analysis (OBIA) and deep models with 
spatial attention mechanisms and the introduction of geographical in-
formation and additional auxiliary data may benefit the detection of 
large-area clouds and their discrimination from snow. In addition, 
constructing individual models for different local scenes and learning 
scene adaptive models for cloud detection in different complex surfaces 
may also help boost accuracy. 

In addition, there is still much room for improvement in cloud 
shadow detection. For example, the cloud shadow accuracy of the 
widely used Fmask algorithm for Landsat images is only about 70% (Zhu 
and Woodcock, 2012; Hughes and Kennedy, 2019). Cloud shadow 
detection has received less attention than cloud detection given that 
cloud shadows usually account for only a small percentage compared 
with clouds in images. On the one hand, cloud shadows are easily 
confused with dark and low-reflectivity targets in images, such as terrain 
shadows and water bodies, thereby challenging the accurate detection of 
cloud shadow, especially for high spatial resolution images in which the 
features of cloud shadow are not sufficiently significant. The cloud 
shadow detection accuracy is also limited by the accuracy of cloud 
detection and the errors generated by the physical-rule based models 
when matching clouds with their shadows. On the other hand, the 
overall area of cloud shadows in the image is usually much smaller than 
that of clouds due to the fact that most cloud shadows are obscured by 
clouds influenced by satellite viewing and solar angles, which may lead 
to sample categories imbalance and reduce the accuracy of cloud 
shadow detection for machine-learning based algorithms to some de-
gree. The insufficient cloud shadow training samples in DL-based algo-
rithms is one factor that leads to poor cloud shadow detection accuracy. 
In this regard, given the category imbalance between clouds and cloud 
shadows, introducing small sample transfer learning will help improve 
cloud shadow detection accuracy. Moreover, with the aid of multi- 
source auxiliary data (e.g., DEM), terrain shadows in images can be 
predicted and used to reduce the misidentification of cloud shadows. 

6.2. Combination of physical model and deep learning for CCS detection 
and removal 

Physical-rule and DL-based algorithms have been widely and indi-
vidually developed for CCS detection, which can be essentially catego-
rized as model-driven and data-driven methods given their 

characteristics and advantages, respectively. The model-driven (i.e. 
physical-rule based and variational-model based) methods are usually 
definite and are construed based on the empirical assumptions, which 
may be difficult to cope with complex land cover conditions and the 
solving efficiency of variational models needs to be improved. On the 
contrary, while the data-driven (i.e. traditional machine-learning based 
and DL-based) methods have more strong feature representation capa-
bilities than model-driven methods, their performances rely heavily on 
training data. Considering that the acquisition of large-scale CCS 
training samples is time-consuming and inefficient as there are many 
different types of images, the combination of model-driven and data- 
driven methods will be promising for CCS detection, and boosting 
model performance and efficiency while reducing the need for training 
samples. In terms of features and data, the output of the physical model 
can be used as the prior knowledge and input features of the deep model, 
and the physical model such as atmospheric scattering law can also be 
used to stimulate cloud samples and to meet the sample requirements of 
the deep model to some degree. In terms of methods, model-driven (i.e. 
variational model) and data-driven (i.e. deep learning) methods can be 
combined in different forms referring to the study of Shen et al. (2021), 
their coupling will combine their strengths and benefit the improve-
ments of accuracy and efficiency simultaneously. Therefore, the com-
bination of the physical model and DL, especially the coupling of model- 
driven and data-driven methods, are promising for CCS detection and 
worths further exploration in the future. 

In addition, the commonly called cloud detection usually does not 
include the detection of thin clouds like haze, instead, direct dehazing 
and thin cloud removal is performed to reduce the effect of haze and thin 
clouds. Considering that both haze and clouds are degrading factors 
affecting the quality of optical satellite images, the processing of clouds 
usually consists of three parts, including dehazing/thin cloud removal, 
cloud detection, and thick cloud removal, which are usually performed 
independently or partially coupled. In the future, a promising consid-
eration is to combine physical models and data-driven methods to 
achieve a joint estimation of cloud thickness for both thin and thick 
clouds, and conduct an integrated thin/thick cloud removal to improve 
the image quality and usability. In particular, physical models can be 
used to simulate a large number of hazy and cloud-covered image 
samples for model training of data-driven methods, such as deep 
learning, to construct an integrated model for simultaneous thin and 
thick cloud removal in images. With the rapidly growing amount of 
optical satellite images, such a combination and method will be able to 
provide strong support for efficient cloud processing of massive images. 

6.3. Development of a unified framework for CCS detection for multi- 
sensor images 

Due to the differences in band settings and spectral responses of 
satellite images of different sensors, most of the current CCS detection 
algorithms have been developed and applied to specific types of images, 
thereby limiting the applicability of CCS detection algorithms for multi- 
sensor images. Given the increasing number of satellite image data 
sources, developing different algorithms for images of previously or 
newly launched satellites becomes inefficient. Therefore, a unified 
framework should be developed to boost the generalizability of CCS 
detection for images of multiple sensors. In this regard, analyzing 
common spectral characteristics and mining the invariant spatial fea-
tures and even temporal difference features of images will benefit the 
development of a unified framework for the CCS detection of multi- 
sensor images. Although several recent studies have attempted to ach-
ieve multi-sensor CSS detection based on DL (Li et al., 2019b; Wieland 
et al., 2019), the application of current DL-based CCS detection algo-
rithms cannot be effectively extended to other types of images due to the 
large sample requirements for model training and the unique charac-
teristics of images from different sensors. With the continuous ad-
vancements of DL techniques, algorithms supported by transferring 
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learning techniques, such as domain adaptation, have promising appli-
cations in addressing large sample requirements, in which models 
trained on the source domain can also be applied to the target domain 
without much accuracy reduction, and thus achieve the goal of CCS 
detection for multi-sensor images. In addition, simulating cloudy images 
based on clear images of multiple sensors through advanced image 
synthesis techniques, such as GAN, can generate a large number of 
training samples with very little human effort. Such an approach can be 
used to meet the training requirements of multi-sensor models, and 
provide a new scheme for the construction of a unified framework for 
CCS detection in multi-sensor images. 

6.4. AI-enabled online cloud processing for large-scale optical satellite 
data 

With the release of a large amount of optical satellite data, the dense 
processing requirements motivate us to develop more effective online 
cloud detection algorithms. Online processing platforms, such as Google 
Earth Engine (GEE), Amazon Web Services, and Microsoft Azure, pro-
vide opportunities to quickly access and process big satellite data online 
to support their wide range of applications. In this case, online cloud 
detection algorithms are crucial to achieving a near-real-time pre-pro-
cessing of optical satellite images. Recent studies (Mateo-García et al., 
2018; Yin et al., 2020) have investigated cloud detection in online GEE 
platforms and achieved satisfactory results. In the future, the further 
combination of online processing platforms and artificial intelligence 
(AI) technologies will provide a new paradigm for the processing of 
large-scale satellite data, including but not limited to cloud detection, 
and enable the high-precision and efficient application of large-scale 
Earth observation data. 

6.5. Integration of cloud detection/removal with image time series 
analysis 

Image time series play an important role in the long-term monitoring 
of the Earth surface, however, cloud coverage causes the problem of 
information missing in image time series. In this regard, cloud detection 
and removal are both essential for the composition of clean and seamless 
images of desired areas, especially cloudy areas and other areas with 
abundant rainfall. Given that multi-temporal cloud removal usually 
utilizes auxiliary information from the adjacent temporal images of the 
same areas to reconstruct the cloud-covered areas, cloud detection and 
cloud removal are treated as individual processes in most previous 
studies. Therefore, the integrated multi-temporal cloud detection and 
removal will improve processing efficiency and reduce error accumu-
lation. On the one hand, the temporal features in image time series 
benefit the accuracy improvement of CCS detection, especially in com-
plex and bright land surfaces. On the other hand, image time series, 
which provide longer and more continuous observation information, 
also benefit the accurate reconstruction of cloud-covered areas. In terms 

of the integration of cloud detection and cloud removal, time series 
models (Zhu and Woodcock, 2014a, 2014b) and variational models 
(Chen et al., 2019; Duan et al., 2020) have demonstrated their appli-
cation potentials, and more advanced techniques, such as DL, warrant 
further exploration. 

7. Conclusions 

CCS detection is an essential step in satellite image preprocessing and 
applications and has remained an important topic in the field of optical 
remote sensing. This review has examined the trends in the field through 
a literature survey, reviewed the CCS detection studies from the fea-
tures, algorithms, and validation aspects and summarized the existing 
problems, and provided our prospects for future development. It can be 
concluded that the combination of spectral, spatial, temporal, and multi- 
source features from auxiliary data has been proved effective to alleviate 
the commission and omission problems of CCS. In terms of using only 
the information from the images themselves, spectral-spatial features 
and spectral-spatial-temporal features are the two most promising types 
of features that enable high-precision CCS detection. Particularly, DL- 
based methods have been demonstrated their superiority over other 
types of algorithms in CCS detection with the support of sufficient 
training data. Collocated LiDAR/radar data and ground-based camera 
data were alternative sources for validation, as the acquisition of 
manually labeled masks was time-consuming. Further improvement in 
CCS detection algorithms can be made by improving accuracy in com-
plex conditions, and by boosting the cross-sensor generalizability by 
developing a unified framework. Further research is warranted in 
investigating the combination of physical model and deep learning, 
exploring the integration of thin/thick cloud detection/removal, and 
developing AI-enabled online processing methods for large-scale satel-
lite data, which will facilitate efficient processing and fine applications 
of optical satellite imagery. 
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Appendix A:. Open-source tools for CCS detection   

Name Applicable 
images (mainly) 

References Descriptions (data 
and method) 

Link 

Landsat Fmask Landsat 4–8 
Sentinel-2 

Zhu and 
Woodcock, 2012 

Mono-temporal 
image 
Physical rule based 

https://github.com/GERSL/Fmask 

Tmask Landsat 4–8 Zhu and 
Woodcock, 2014b 

Multi-temporal 
images 
Temporal change 
based 

https://github.com/GERSL/Tmask 

MSScvm Landsat MSS Braaten et al., 
2015 

Multi-source data 
Physical rule based 

https://github.com/jdbcode/MSScvm 

(continued on next page) 
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(continued )  

Name Applicable 
images (mainly) 

References Descriptions (data 
and method) 

Link 

MFmask Landsat 4–8 Qiu et al., 2017 Multi-source data 
Physical rule based 

https://github.com/qsly09/MFmask 

MCM-GEE Landsat-8 Mateo-García 
et al., 2018 

Multi-temporal 
images 
Temporal change 
based 

https://github.com/IPL-UV/ee_ipl_uv 

Cloud-Net Landsat-8 Mohajerani and 
Saeedi, 2019 

Mono-temporal 
image 
DL based 

https://github. 
com/SorourMo/Cloud-Net-A-semantic-segmentation-CNN-for-cloud-detection 

Cmask Landsat-8 Qiu et al., 2020 Multi-temporal 
images 
Temporal change 
based 

https://github.com/GERSL/Cmask 

DAGANS Landsat-8 
Proba-V 

Mateo-Garcia 
et al., 2020 

Mono-temporal 
image 
DL based 

https://github.com/IPL-UV/pvl8dagans 

FCNN Landsats-8 
Sentinel-2 

López-Puigdollers 
et al., 2021 

Mono-temporal 
image 
DL based 

https://github.com/IPL-UV/DL-L8S2-UV 

Sentinel- 
2 

MAJA Sentinel-2, 
VENµS, Landsat-8 

Hagolle et al., 
2010 

Multi-temporal 
image 
Temporal change 
based 

https://github.com/CNES/MAJA 

cB4S2 Sentinel-2 Hollstein et al., 
2016 

Mono-temporal 
image 
Machine learning 
based 

https://github.com/hollstein/cB4S2 

Sen2Cor Sentinel-2 Main-Knorn et al., 
2017 

Mono-temporal 
image 
Physical rule based 

https://step.esa.int/main/snap-supported-plugins/sen2cor/ 

s2cloudless Sentinel-2 Zupanc, 2017 Mono-temporal 
image 
Machine learning 
based 

https://github.com/sentinel-hub/sentinel2-cloud-detector 

FORCE Sentinel-2 
Landsat 4–8 

Frantz et al., 2018 Mono-temporal 
image 
Physical rule based 

https://github.com/davidfrantz/force 

KappaMask Sentinel-2 Domnich et al., 
2021 

Mono-temporal 
image 
DL based 

https://github.com/kappazeta/cm_predict 

CD-FM3SF Sentinel-2 Li et al., 2021 Mono-temporal 
image 
DL based 

https://github.com/Neooolee/WHUS2-CD 

Gaofen MFC Gaofen-1 WFV Li et al., 2017 Mono-temporal 
image 
Physical rule based 

http://sendimage.whu.edu.cn/en/mfc 

GeoInfoNet Gaofen-1 WFV Wu et al., 2021 Mono-temporal 
image 
DL based 

https://github.com/permanentCH5/GeoInfoNet 

Others N/A HR images Xie et al., 2017 Mono-temporal 
image 
DL based 

http://xfy.buaa.edu.cn/code.html  

Appendix B. Open-source datasets for CCS detection.  

Name Source References Descriptions Link 

L7_Irish Landsat-7 
(30 m) 

Scaramuzza 
et al., 2012; 
USGS., 
2016a 

Contains 206 
Landsat-7 
scenes from 
nine global 
latitude zones 
with manually 
generated 
masks, of 
which only 45 
scenes are 
labeled for 
cloud shadows. 

https://landsat.usgs.gov/landsat-7-cloud-cover-assessment-validation-data 

L8_SPARCS Landsat-8 
(30 m) 

Hughes and 
Hayes, 
2014; 

Contains 80 
subsets of 
Landsat-8 

https://www.usgs. 
gov/core-science-systems/nli/landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs 
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(continued ) 

Name Source References Descriptions Link 

USGS., 
2016c 

scenes with a 
size of 1000 ×
1000 pixels 
that are 
labeled for 
both clouds 
and cloud 
shadows. 

L8_Biome Landsat-8 
(30 m) 

Foga et al., 
2017; 
USGS., 
2016b 

Contains 96 
Landsat-8 
scenes from 
eight global 
biomes with 
manually 
generated 
cloud masks, of 
which 32 
scenes are 
labeled for 
cloud shadows. 

https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data 

95-Cloud Landsat-8 
(30 m) 

Mohajerani 
and Saeedi, 
2019 

Contains 95 
Landsat-8 
images and 
associated 
pixel-level 
cloud labels 
that is an 
extension of 
the previously 
established 38- 
Cloud dataset. 

https://github.com/SorourMo/95-Cloud-An-Extension-to-38-Cloud-Dataset 

Snow-Cloud 
Validation Masks 

Landsat-8 
(30 m) 

Stillinger 
and Collar, 
2019 

Contains 13 
Landsat-8 
images and 
corresponding 
clouds and 
snow labels at 
mid-latitude 
mountainous 
regions. 

https://zenodo.org/record/3240937 

RICE_dataset Landsat-8 
(30 m) 

Lin et al., 
2019 

Contains 450 
Landsat-8 
images and 
corresponding 
cloud-free 
images and 
cloud labels 
with a size of 
512 × 512 
pixels in one of 
two subsets of 
the dataset. 

https://github.com/BUPTLdy/RICE_DATASET 

WHU Cloud Dataset Landsat-8 
(30 m) 

Ji et al., 
2021 

Contains 7 
Landsat-8 
images and 
corresponding 
cloud-free 
historical 
images and 
cloud and 
shadow masks 
in six different 
regions. 

https://gpcv.whu.edu.cn/data/WHU_Cloud_Dataset.html 

S2-Hollstein Sentinel-2 
(10 m) 

Hollstein 
et al., 2016 

Consists 
5,647,725 
pixels based on 
images 
acquired over 
the entire 
globe with 
cloud, cirrus, 
snow, shadow, 
and water 
labels. 

https://git.gfz-potsdam.de/EnMAP/sentinel2_manual_classification_clouds 

S2-BaetensHagolle Sentinel-2 
(10 m) 

Provides cloud 
masks for 38 

https://zenodo.org/record/1460961 
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(continued ) 

Name Source References Descriptions Link 

Baetens and 
Hagolle, 
2018 

Sentinel-2 
scenes selected 
in 2017 or 
2018, each 
with cloud and 
cloud shadow 
labels. 

T-S2/T-PS Sentinel-2 
(10 m) 
PlanetScope 
(3 m) 

Shendryk 
et al., 2019 

Contains 4,993 
Sentinel-2 and 
4,943 
PlanetScope 
subscenes with 
a size of 512 ×
512 pixels and 
only RGB and 
NIR bands over 
the Wet 
Tropics of 
Australia, each 
is labeled at 
the block level. 

https://data.mendeley.com/datasets/6gdybpjnwh/1 

Sentinel-2 Cloud 
Mask Catalogue 

Sentinel-2 
(10 m) 

Francis 
et al., 2020 

Comprises 20 
m resolution 
cloud masks 
for 513 
subscenes, of 
which 424 
subscenes are 
labeled for 
cloud shadows. 

https://zenodo.org/record/4172871 

Sentinel-2 KappaZeta Sentinel-2 
(10 m) 

Domnich 
et al., 2021 

Contains 4403 
labeled image 
blocks with a 
size of 512 ×
512 pixels 
from 155 
Sentinel-2 
images over 
the Northern 
European 
terrestrial area. 

https://zenodo.org/record/5095024 

WHUS2-CD Sentinel-2 
(10 m) 

Li et al., 
2021 

Contains 32 
Sentinel-2 
images 
distributed in 
Mainland 
China and its 
reference 
cloud masks 
labeled at 10 m 
resolution. 

https://github.com/Neooolee/WHUS2-CD 

GF1_WHU Gaofen-1 
WFV 
(16 m) 

Li et al., 
2017 

Contains 108 
globally 
distributed GF- 
1 WFV scenes 
and their 
manually 
labeled cloud 
and cloud 
shadow masks. 

http://sendimage.whu.edu.cn/en/mfc-validation-data 

Levir_CS Gaofen-1 
WFV 
(16 m) 

Wu et al., 
2021 

Contains 4,168 
globally 
distributed 
Gaofen-1 WFV 
scenes (down 
sampled to 
160 m 
resolution) and 
the 
corresponding 
geographical 
data, cloud, 
and snow 
labels. 

https://github.com/permanentCH5/GeoInfoNet 

WDCD dataset Gaofen-1 
PMS 

Li et al., 
2020 

Contains over 
200,000 

https://github.com/weichenrs/WDCD 
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(continued ) 

Name Source References Descriptions Link 

(8 m) 
Ziyuan-3 
MUX 
(5.8 m) 

globally 
distributed 
Gaofen-1 
image blocks 
labeled at the 
block level for 
training and 30 
Gaofen-1 and 
Ziyuan-3 
scenes labeled 
at the pixel 
level for 
validation and 
testing. 

N/A Gaofen 
series 
(N/A) 

Sun et al., 
2020 

Contains 745 
paired NIR-R-G 
composited 
images and 
corresponding 
pixel-level 
labels with a 
size of 256 ×
256 pixels. 

https://bhpan.buaa.edu.cn/#/link/DDC7765A5A049E0F9A0DAD0E9F7692C5 

AIR-CD Gaofen-2 
PMS 
(4 m) 

He et al., 
2021 

Contains 34 
Gaofen-2 full 
images and the 
corresponding 
cloud labels 
distributed at 
different 
regions of 
China. 

https://github.com/AICyberTeam/AIR-CD 

HRC_WHU Google 
Earth 
(0.5 m to 
15 m) 

Li et al., 
2019b 

Comprises 150 
globally 
distributed 
high- 
resolution 
images (0.5 m 
to 15 m 
resolution, 
three RGB 
channels) and 
the 
corresponding 
cloud masks. 

http://sendimage.whu.edu.cn/en/hrc_whu  
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