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A B S T R A C T   

The thick cloud coverage phenomenon severely disturbs optical satellite observation missions (covering 
approximately 40–60% areas in the global scale). Therefore, the manner by which to eliminate thick cloud in 
remote sensing imagery is greatly significant and indispensable. In this study, we combine the deep spatio- 
temporal prior with low-rank tensor singular value decomposition (DP-LRTSVD) for thick cloud removal in 
multitemporal images. On the one hand, DP-LRTSVD utilizes the low-rank characteristic of multitemporal images 
via the third-order tensor SVD and completion. On the other hand, DP-LRTSVD employs the deep spatio-temporal 
feature expression ability by 3D convolutional neural network. The proposed framework can effectively elimi-
nate thick cloud in multitemporal images through combining the model-driven and data-driven strategies. 
Moreover, DP-LRTSVD outperforms on thick cloud removal in the simulated and real multitemporal Sentinel-2/ 
GF-1 experiments compared with model-driven or data-driven methods. In contrast with most methods that can 
only use a single reference image for thick cloud removal, the proposed method can simultaneously eliminate 
thick cloud in time-series images.   

1. Introduction 

Optical satellites play a crucial role for earth observation mission, 
such as global land covering (Qiu et al., 2019), ocean monitoring (Liu 
et al., 2019), and atmospheric pollutant retrieval (Wang et al., 2020). 
However, almost all of the bands in optical satellites are inevitably 
polluted by thick cloud and cloud shadow due to the physical limitation 
of the electromagnetic spectrum (Weng, 2009; Watmough et al., 2011). 
The original information under thick cloud and shadow is directly 
covered or polluted. This issue seriously disturbs the subsequent remote 
sensing imagery processing and applications (Li et al., 2019; Meraner 
et al., 2020; Zhang et al., 2020). 

The distribution of thick cloud is widespread in most obtained op-
tical satellite data (Qiu et al., 2019). Cloud-free remote sensing images 
are rare and difficult to acquire, especially for the desired time and 
location (Li et al., 2019; Wang et al., 2020; Xu et al., 2019). Therefore, 
the mechanism by which to eliminate the thick cloud in optical images is 
significant for remote sensing interpretations and applications (Zhu 
et al., 2011; Zhang et al., 2019a). 

To date, a variety of methods have been presented for thick cloud 
removal in remote sensing images. From the perspective of information 
domain (Shen et al., 2015; Zhang et al., 2019), these methods could be 
classified as the three types: 1) Spatial domain; 2) temporal domain; and 
3) spatio-temporal domain methods. The details of these algorithms are 
listed as follows: 

1) Spatial domain: The spatial-based method is the basic strategy 
for thick cloud removal in single remote sensing imagery. This strategy 
transforms the thick cloud removal task into the image completion or 
inpainting task (Watmough et al., 2011; Xu et al., 2021). The spatial- 
based methods rely on just a single image for missing data reconstruc-
tion without other auxiliary information. These methods can utilize 
diffusion-based, variation-based, and learning-based strategy to elimi-
nate the thick cloud in remote sensing data by means of several math-
ematical tools. Chan and Shen (2001) developed a nonlinear partial 
differential equation image completion algorithm. Maalouf et al. (2009) 
employed bandelet transform and total variation for thick cloud removal 
in remote sensing image. Zheng et al. (2020) introduced a generative 
network for single image thick removal. The spatial-based methods are 
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convenient for eliminating small thick cloud in a single image. Never-
theless, these methods are unstable and incredible, especially for large 
area cloud covering (Shen et al., 2015). 

2) Temporal domain: The temporal-based methods utilize the time- 
series information for filling the cloudy regions (Bayad et al., 2020). 
These methods take advantage of the sequentiality in multi-temporal 
images, especially for long-term remote sensing data. The time-series 
filters are typical methods for the temporal-based methods. Chen et al. 
(2004) introduced the Savitzky-Golay filter for time-series NDVI 
reconstruction under the cloudy or poor atmospheric conditions. Sedano 
et al. (2014) proposed a recurrent Kalman filter for rebuilding contin-
uous and dense 30 m NDVI long-term results through MODIS and 
Landsat images. Kong et al. (2019) developed a weighted Whittaker 
filter for global EVI time-series smoothing and gap-filling, especially for 
thick cloud contaminated pixels. Overall, the temporal-based methods 
can effectively reflect the smooth and sequential 1D temporal informa-
tion. However, these methods ignore the 2D spatial information, which 
is crucial for large area thick cloud removal, especially for the cloud 
boundary regions (Mateo-García et al., 2020). 

3) Spatio-temporal domain: The spatio-temporal methods have 
been gradually presented for thick cloud removal in recent years to 
overcome the above-mentioned shortages of the spatial-based and 
temporal-based models. These methods jointly employed spatial and 
temporal information (Weng et al., 2014), and they could simulta-
neously consider the spatial consistency and temporal sequentiality. Zhu 
et al. (2011) proposed an improved neighborhood homogeneous value 
interpolation spatio-temporal model that could greatly fill the gap or 
thicken the cloud regions in Landsat reflectivity images. Chen et al. 
(2016) introduced the spatio-temporal weighted regression strategy to 
reconstruct time-series cloud-free Landsat images. Zhang et al. (2019b) 
utilized the spatio-temporal group-sparsity and robust principal 
component analysis theory to remove the thick cloud in multi-temporal 
images. Chen et al. (2019) developed a blind thick cloud and shadow 
removal method by means of the low-rank property of multi-temporal 
images. Cao et al. (2020) presented a spatio-temporal autoregression 
model for thick cloud removal in Landsat time-series images, and it also 
considered the effects of cloudy temporal images. In addition to the 
above-mentioned model-based methods, several data-driven-based 
methods have been proposed for thick cloud removal, benefiting from 
the rapid development of deep learning. Zhang et al. (2018) built a 
unified spatio-temporal–spectral network to deal with the various 
incomplete information filling issues, such as deadline and thick cloud 
elimination. Zhang et al. (2020) further developed a deep progressive 
spatio-temporal model (named PSTCR) for multi-temporal image thick 
cloud removal. The PSTCR method could use multiple cloudy images 
rather than just a single cloud-free image as the reference information. 

Recently, the spatio-temporal methods have increasingly become the 
mainstream strategy for thick cloud removal (Cao et al., 2020; Duan 
et al., 2020; Li et al., 2019). These methods can be classified as two 
types: model-driven and data-driven methods (Luo et al., 2011; Yuan 
et al., 2019; Zhang et al., 2019). Nevertheless, pros and cons exist in the 
model-driven or data-driven strategy for spatio-temporal thick cloud 
removal (Zhang et al., 2020). Some shortages and limitations still exist 
in the two strategies for thick cloud removal. The detailed descriptions 
are provided below. 

For model-driven methods: These methods can accurately depict 
the inherent characteristics of multi-temporal images, such as low-rank 
tensor completion (Ji et al., 2018) and sparse representation (Xu et al., 
2016). However, these methods are sensitive to the setting parameters, 
such as rank value and iteration number (Chen et al., 2011; Gao and Gu, 
2017). Besides, the model-driven methods are time consuming due to 
the complex iterative optimizations (Jiang et al., 2020; Zhao et al., 2020; 
Zhang et al., 2020). 

For data-driven methods: These methods efficiently execute due to 
the deep learning strategy and large sample training. Nevertheless, the 
simulated cloud distribution for multi-temporal cloud-free samples is 
not consistent with the real thick cloud distribution because of the 
complicated atmospheric flow procedure. However data-driven 
methods poorly perform when the data distribution of the training 
samples are dissimilar with the testing cloudy images (Liang et al., 2020; 
Ouyang et al., 2020; Yu et al., 2019). Lastly, data-driven methods still 
have limitations to fully utilize the spatial consistency between the 
cloudy and the neighboring cloud-free regions (Paudel and Andersen, 
2011). These issues greatly affect the generality of data-driven methods. 

Apart from above-mentioned shortcomings of the data-driven and 
model-driven methods, another practical issue also needs to be 
emphasized. Most spatio-temporal methods can recover just a single 
cloudy image rather than time-series cloudy images (Zhang et al., 2021). 
In addition, the reference image must be cloud-free to act as the tem-
poral complementary information in most cloud removal methods. 
However, this assumption is Utopian and unpractical due to the actual 
imaging environment (Zhu and Woodcock, 2012). Almost all full-width 
images are polluted by thick cloud in optical satellite images to a certain 
degree. A cloud-free reference image is difficult and rare to acquire (Qiu 
et al., 2019; Zhu et al., 2015). Hence, the mechanism by which to 
simultaneously deal with time-series cloudy images is also significant for 
thick cloud removal. 

From the above perspectives, can we simultaneously utilize the advantages 
of model-driven methods with data-driven methods for thick cloud removal in 
time-series cloudy images? 

On this basis, we develop a novel spatio-temporal strategy for mul-
titemporal image thick cloud removal via combining the model-driven 
and data-driven strategies. The main contributions of this study are 
listed as follows:  

• In this study, we propose a novel framework: Deep Spatio-temporal 
Prior with Low-rank Tensor Singular Value Decomposition (SVD) 
(DP-LRTSVD) for thick cloud removal in multitemporal images via 
combining the model-driven and data-driven strategies. The deep 3D 
spatio-temporal prior and low-rank tensor completion are integrated 
in the proposed method to benefit from each other.  

• DP-LRTSVD jointly utilizes the low-rank characteristic of time-series 
images via the third-order tensor SVD and the deep spatio-temporal 
feature expression ability via the 3D convolutional neural network 
under the ADMM iteration optimization framework. This strategy 
can effectively accelerate and boost the convergence procedure.  

• In contrast with most methods that can only use a single reference 
image for thick cloud removal, DP-LRTSVD can simultaneously deal 
with time-series cloudy images. Experimental results testify the 
practicability of the proposed method for GF-1/Sentinel-2 images. 

The rest of this paper is organized as follows. Section 2 defines the 
problem formulation and describes the algorithmic details of the pro-
posed method. Section 3 shows the multitemporal thick cloud removal 
results of the simulated and real experiments. Section 4 presents the 
discussion to investigate the parameter sensitivity and iteration opti-
mization of the proposed method. Finally, Section 5 summarizes the 
conclusion and prospect. 

2. Methodology 

2.1. Problem formulation 

Before the proposed cloud removal model is illustrated, the notation 
declarations are defined as follows: The tensor value is set as the curlicue 
format, such as 𝒳 . The matrix value is fixed in boldface capital format, 
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such as X. The vector value is determined in boldface lowercase format, 
such as x. The scalar value is identified in italic lowercase format such as x. 

In consideration of the thick cloud covering as the information 
missing issue in multitemporal images, the general degraded model can 
be simplified as follows: 

𝒴 = 𝒳 ⊗ℳ (1)  

where 𝒴 ∈ Rw×h×t represents the time-series cloudy images for each 
band. 𝒳 stands for the corresponding time-series cloud-free images of 𝒴. 
ℳ refers to the time-series cloud and shadow masks of 𝒴. ⊗ denotes the 
cloud and shadow pollution procedure. The solving procedure from 
cloudy 𝒴 to cloud-free images 𝒳 is an ill-posed problem. Therefore, 
suitable priors must be introduced to interfere the latent clean images 𝒳 . 
Multitemporal images have a strong correlation in temporal dimension. 
We depict the statistical distribution of the singular values of the mul-
titemporal Sentinel-2 images, as shown in Fig. 1. The image shows the 
decaying trends of the curve, thus indicating the low-rank prior of 
multitemporal images. 

An extensive thick cloud removal framework for multitemporal im-
ages could be formulated as follows taking the low-rank characteristic of 
the third-order tensor via stacking the time-series cloudy images: 

min
𝒳

1
2
‖𝒴 − 𝒳 ⊗ℳ‖F + λ⋅𝒯

(

𝒳

)

(2)  

where 𝒯 (⋅) could be denoted as any tensor low-rank regularization term 
to utilize the low-rank prior of multitemporal images, and λis the 
balancing factor of the regularization prior term. (2) could be rewritten 
through introducing the tenor nuclear norm theory (Zhang and Aeron, 
2017): 

𝒳min
𝒳

1
2
‖𝒴 − 𝒳 ⊗ℳ‖F + λ⋅‖𝒳‖TNN (3)  

where ‖𝒳‖TNN refers to the tubal nuclear norm of tensor 𝒳 , which is the 
sum of singular values of all the frontal slices of 𝒳 . This expression can 
be defined as follows: 

‖𝒳‖TNN = ‖𝒳‖* (4)  

2.2. DP-LRTSVD model 

The flowchart of the proposed DP-LRTSVD framework for thick 
cloud removal in multitemporal images is depicted in Fig. 2. First, the 
time-series cloudy images and corresponding cloud masks ℳ ∈ Rw×h×t 

are stacked as the initialized third-order tensor 𝒴 ∈ Rw×h×t . Second, this 
third-order tensor is decomposed by three components, namely, 𝒰 ∈

Rh×h×t ,𝒮 ∈ Rw×h×t, and 𝒱 ∈ Rw×w×t through tensor-SVD in Fig. 2. Third, 
the reorganized tensor 𝒵 ∈ Rw×h×t is generated through tensor-product 
and then updated as the updated tensor ℘ ∈ Rw×h×t via (13) and cloud 
masks. Fourth, tensor ℘ and the corresponding cloud masks are simul-
taneously imported as the input data of a deep 3D spatio-temporal 
network to further adjust the reconstructing cloudy regions. Finally, if 
the current result satisfies the convergence condition, then the imme-
diate result is exported as the final outputs in Fig. 2. Otherwise, the 
optimizing iteration is carried out through alternating the direction 
method of multipliers (ADMM) (Boyd et al., 2011) until the convergence 
condition or the maximum number of iterations is met. The details of 
these steps are described as follows: 

a) Preprocessing: Before thick cloud removal in multitemporal 
images, the mechanism by which to estimate the precise cloudy regions 
is extremely significant for the subsequent procedure. Therefore, cloud 
detection in remote sensing imagery is an indispensable preprocessing 
step for cloud removal. In this work, we use the MSCFF (Li et al., 2019) 
method to obtain the time-series cloud masks ℳ, as shown in Fig. 2. The 
cloud masks simultaneously include cloud and cloud shadow. Cloud 
mask in a single date is a binary matrix, in which the cloudy and cloud- 
free pixels are denoted as one and zero, respectively. The initialized 
input 𝒴 is generated via the point-wise product operation between the 
original time-series cloudy images and the corresponding cloud masks to 
better solve the optimal value in tensor decomposition. 

b) Tensor-product: Tensor-product refers to the ∗ operation be-
tween two third-order tensors, namely, ℬ1 ∈ Rn1×n2×n3 and 
ℬ2 ∈ Rn2×n4×n3 . The definition of tensor-product ℬ1 ∗ ℬ2 is determined as 
follows: 

ℬ3

(

i, j, :

)

=
∑n2

k=1
ℬ1

(

i, k, :

)

⊙ ℬ2

(

k, j, :

)

(5)  

where ℬ3 ∈ Rn1×n4×n3 and ⊙represent the circular convolution opera-
tion. 

c) Tensor-SVD: After the cloud masks are obtained, we stack the 
multiple temporal cloudy images for each band as a three-order tensor. 
Then, tensor-SVD (Zheng et al., 2020) is utilized to constrain the low- 
rank characteristic of multitemporal images. The third-order tensor 𝒴 ∈

Rw×h×t can be decomposed as three components, namely, 𝒰 ∈ Rh×h×t ,

𝒮 ∈ Rw×h×t, and 𝒱 ∈ Rw×w×t in Fig. 2: 

𝒴 = 𝒰*𝒮*𝒱⊤ (6)  

where ∗ stands for the tensor product operation in the next step. In the 
third-order tensor-SVD, we primarily obtain the three components as 
follows: 
(
Ui,Si,V⊤

i

)
= SVD

(
Yi
)
→i = 1, 2, 3 (7)  

where SVD(⋅) represents the matrix SVD function. Yi refers to the frontal 
slice matrix of the third-order tensor 𝒴(:, :, i), the same as Ui,Si, and Vi. 
The fast Fourier transformation (FFT) and inverse fast Fourier trans-
formation (IFFT)1 are introduced to these matrix SVD operations to 
enhance the mathematical solving efficiency (Lu et al., 2015). Then, the 
tensor tubal rank r of a third-order tensor is determined to be the 
maximum number of non-zero tubes of each Si in (7): 

r = ranktubal

(
𝒴
)
= max

(
D
(

S1

)
,D
(

S2

)
,D
(

S3

))
(8)  

where D(⋅) stands for the non-zero number of the diagonal matrix 
operation for S1,S2, and S3. To further exploit the low-rank and sparse 
characteristic of the third-order tensor, the original 𝒰, 𝒮, and 𝒱 are 

Fig. 1. Statistical distribution of the singular values of the multitemporal 
Sentinel-2 images. 

1 We implement the matrix FFT and IFFT operation through Python scipy 
package 
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simplified through the tubal rank interception as follows: 

𝒰 = 𝒰
(
:, 1 : r, :

)
(9)  

𝒮 = 𝒮
(

1 : r, 1 : r, :
)

(10)  

𝒱 = 𝒱
(
:, 1 : r, :

)
(11)  

After tensor-SVD and tubal rank simplification, the proposed model 
reorganizes the new third-order tensor 𝒵 ∈ Rw×h×t below: 

𝒵 = 𝒰*𝒮*𝒱
⊤ (12)  

Then, we introduce a Lagrange multiplier 𝒬 ∈ Rw×h×t and penalty 
parameter β (Lu et al., 2019) to optimize the proposed framework: 

℘ = ℳ⊙
(
𝒵+ β⋅𝒬

)
+
(
1 − ℳ

)
⊙ 𝒴0 (13)  

where cloud masks ℳ are employed to restrict the cloud-free and 
reconstruction regions. 𝒴0 is the initial input of the proposed model in 
Fig. 2. 

d) Deep 3D Spatio-temporal Prior: Considering the context con-
sistency between the cloudy and the adjacent cloud-free regions, the 
spatio-temporal information can be utilized for thick cloud removal. We 
introduce a deep 3D spatio-temporal prior into the proposed method to 
boost the reconstruction accuracy in Fig. 2. The architecture of the deep 
3D spatio-temporal network (3D-ST Net) is displayed in Fig. 3, taking 
the reorganized third-order tensor ℘ and cloud masks ℳ as the inputs. 

In Fig. 3, 3D-ST Net uses the 3D CNN with seven layers to exact the 
spatial and temporal information for cloudy region reconstruction. The 
thick cloud removal result could be further enhanced in terms of context 
consistency between the cloudy and the adjacent cloud-free regions 
through this step. The mathematical procedure is defined as follows: 

𝒳D = ℳ⊙ 3DConvdepth=7
(
℘
)
+
(
1 − ℳ

)
⊙ 𝒴0 (14)  

where 3DConv(⋅) represents the cascade-connected 3D CNN layer in 
Fig. 3. The specific descriptions of the network optimization and training 
are provided in Sections 2.3 and 3.1, respectively. 

e) ADMM Optimization: After the reconstruction tensor 𝒳D via 
tensor-SVD, tensor-Product, and 3D-ST Net were obtained, we use the 
alternating direction method of multipliers (ADMM) to iteratively 
approximate the optimal solution (Ji et al., 2018). If the current iteration 
meets the condition of convergence in Fig. 2, then the result is exported 
as the final reconstruction output 𝒳 ∈ Rw×h×t. Otherwise, the proposed 
framework executes the ADMM iteration strategy, as shown in Fig. 2. 
The iterative Lagrange multipliers 𝒬k,𝒴k and penalty coefficient βk of 
the k-th iteration follow the rules for updating in the proposed method to 
boost the convergence solution through ADMM: 

𝒴k = 𝒳 k− 1
D − 1

/
βk− 1⋅𝒬k− 1 (15)  

𝒬k = 𝒬k− 1 + βk− 1⋅
(
𝒴k − 𝒳 k

D

)
(16)  

βk = min
(
η⋅βk− 1, βmax

)
(17)  

where η(η > 1) is the scaling threshold to enhance the robustness of the 
iteration solving procedure. βmax stands for the maximum number of 
ADMM iteration. In the first iteration, the initialized 𝒳0

D,β
0, and 𝒬0 are 

equal to 𝒴0, 0.02, and zero-tensor, respectively. The whole workflow of 
the ADMM algorithm in the proposed framework is listed as follows: 

Algorithm 1. Combined Deep 3D Spatio-temporal Prior with Low- 
rank Tensor SVD for Thick Cloud Removal via ADMM   

Input: Time-series cloudy images 𝒴, corresponding cloud masks ℳ
Initialization: 𝒴0 = (1 − ℳ) ⊙ 𝒴,𝒳0

D = 𝒴0,𝒬0 = 0,β0 = 0.02,βmax = 1,η = 1.3,ε =

1e − 5,k = 1,kmax = 20  
1: while not converged and k⩽kmax do  

2: Updating 𝒰k
,𝒮

k, and 𝒱k via Eqs. (7)–(11)  
3: Updating 𝒵k via (12)  
4: Updating ℘k via (13)  
5: Updating 𝒳k

D via (14)  
6: Updating 𝒴k,𝒬k, and βk via (15)–(17), respectively  
7: If 

⃦
⃦𝒳 k

D − 𝒳k− 1
D
⃦
⃦

F/
⃦
⃦𝒳k− 1

D
⃦
⃦

F < ε, stop iteration  
8: k = k + 1  
9: end while 
Output: The construction cloud-free result 𝒳 = 𝒳k

D    

Fig. 2. Flowchart of the proposed DP-LRTSVD framework.  
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2.3. Network optimization 

In the proposed DP-LRSVD model, we employ the 3D-ST Net to 
further enhance the context consistency between the cloudy and the 
adjacent cloud-free regions in Fig. 3. Therefore, the mechanism by 
which to optimize this network is crucial for thick cloud removal in 
multitemporal images. The reconstruction network develops a jointly 
global-regional loss ℒ for the network optimization to attain holistic 
consistency and regional specificity: 

ℒ = μ1⋅ℒg + μ2⋅ℒr +
(
1 − μ1 − μ2

)
⋅ℒTV (18)  

where μ1 and μ2 represent the balancing thresholds for the global ℒg, 
regional ℒr, and total variational (TV) losses ℒTV . In this global–regional 
loss ℒ, the global ℒg, regional ℒr, and TV losses ℒTV are defined as fol-
lows: 

ℒg =
1

2N
∑N

n=1

⃦
⃦𝒳(n)

D − 𝒳(n)
⃦
⃦2

2
(19)  

ℒr =
1

2N
∑N

n=1

1
sum(ℳ(n))

⃦
⃦ℳ(n) ⊙ 𝒳

(n)
D − ℳ(n) ⊙ 𝒳(n)

⃦
⃦2

2
(20)  

ℒTV =
1

2N

∑N

n=1

∑

i,j

1
sum(ℳ(n))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
𝒳

(n)
D(i,j+1,:) − 𝒳

(n)
D(i,j,:)

)2
+
(
𝒳

(n)
D(i+1,j,:) − 𝒳

(n)
D(i,j,:)

)2
√

(21)  

where (n) stands for the n-th training sample with the whole number size 
N. Global loss ℒg is employed to reconstruct the holistic results. Regional 
loss ℒr is introduced to ensure the context consistency between the 
cloudy and the adjacent cloud-free regions. TV loss ℒTV is utilized to 
promote the spatial smoothness in the reconstruction cloudy regions. 
The detailed descriptions in terms of the network training and parameter 
setting are provided in Section 3.1. 

3. Experiments 

In this section, experimental setting explanations and different 
experimental outcomes are provided to validate the practicability of the 

presented DP-LRSVD. First, Section 3.1 depicts the details of network 
training and parameter setting. Afterward, the simulated and real ex-
periments for thick cloud removal in multitemporal images are carried 
out in Sections 3.2 and 3.3, respectively. 

3.1. Network training and parameter setting 

Network training is important to enhance the context consistency 
between the cloudy and the adjacent cloud-free regions in 3D-ST Net of 
the proposed method. Time-series of the five different clean Landsat TM2 

images in the same covering areas is selected in this work for the training 
data. The acquisition times start from November 9, 2004 to January 30, 
2005. These images comprised four bands from blue to NIR spectrum. 
The spatial size of each image is equal to 2400 × 3200 and with the 30 m 
spatial resolution. After the normalization for each band, we crop these 
time-series images as the patch-tensors with the size of 80× 80× 5. 
Number N of the whole labels is equal to 19,200 in the training dataset. 
The additional cloud mask patches are also employed to generate the 
simulated cloudy time-series data. Then, the original clean and cloudy 
patches are fixed as the label and data samples in our training dataset, 
respectively. 

The specific settings in network training in terms of the network 
hyperparameters are determined below. The batch size is fixed as 32 for 
the training samples. The initial learning rate in the network training 
procedure is varied from 0.01 and gradually reduced via product 
parameter 0.5 for every 50 epochs (Zhang et al., 2018). The whole epoch 
number is set as 300 for network training. ADAM (Zhang et al., 2020) 
strategy is employed as the gradient descent algorithm in back-
propagation. We use the Python language and Pytorch platform to train 
and test our network under Windows 10 environment and GPU accel-
erating mode. 

The related parameters for the parameter setting of the proposed 
framework are listed as follows. Factor β0 in (15) and (16) is initialized 
as 0.02, whose upper limit βmax is equal to one in (17). The scaling 
threshold ηis set as 1.3 to enhance the robustness of the iteration solving 
procedure in (17). In terms of the network optimization, the thresholds 

Fig. 3. Architecture of 3D-ST Net in the proposed model.  

2 Data download link: https://earthexplorer.usgs.gov/. 
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μ1 and μ2 are fixed as 0.7 and 0.25, respectively, to balance the global, 
regional, and TV losses in (18). 

3.2. Simulated experiments 

In the simulated experiments, we employ the time-series cloud-free 
images as the testing data. The multitemporal Sentinel-2 and GF-1 im-
ages are utilized to verify the reliability of the presented thick cloud 

removal framework. The simulated cloud masks are imposed on the 
clean images. Then, the time-series simulated cloudy images are 
reconstructed and displayed in this section through different cloud 
removal algorithms. The model-driven methods HaLRTC (Liu et al., 
2013), BCPF (Zhao et al., 2015), TNN (Zhang and Aeron, 2017), and the 
data-driven method PSTCR (Zhang et al., 2020) are determined as the 
comparing algorithms. In terms of the quantitative evaluation index, we 
use the average Correlation Coefficient (CC), Structural Similarity Index 

Fig. 4. Simulated cloud removal experiments for the multitemporal Sentinel-2 images (09/05, 09/15, 09/20, 10/05, and 10/15/2018) through HaLRTC, BCPF, TNN, 
PSTCR, and the proposed method. 
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Measure (SSIM), Root Mean Square Error (RMSE), and Spectral Angle 
Mapper (SAM) for multitemporal reconstructed images. The detailed 
descriptions and results are provided as follows: 

a) Multitemporal Sentinel-2 results: Five time-series Sentinel-2 
images (acquired times: 09/05, 09/15, 09/20, 10/05, and 10/15/2018 
via Sentinel-2A/B L1C over Mechelen, Belgium) are imposed with the 
simulated cloud, as shown in the first row of Fig. 4. The second, third, 
fourth, fifth, and sixth rows are the reconstructed multitemporal images 
by HaLRTC, BCPF, TNN, PSTCR, and the proposed method in Fig. 4, 
respectively. We validate on 20 m spatial resolution bands (B12, B11, 
B8a, B07, B06, and B05) in these time-series Sentinel-2 images. The 
false-color 500 × 500 results of bands B11, B07, and B05 are displayed 
in Fig. 4. Evaluation indexes CC, SSIM, RMSE, and SAM of the Sentinel-2 
simulated experiments are listed in Table 1. The optimal values in 
Table 1 are marked in bold format for comparison. 

In the fourth row of Fig. 4, the results of TNN show a serious spectral 
distortion issue at date 09/05/2018, especially for large missing area 
reconstruction. TNN exploits only the low-rank tensor property of the 3D 
time-series Sentinel-2 images. Nevertheless, TNN does not consider the 
global consistency and regional particularity for thick cloud removal. In 
the fifth row of Fig. 4, the reconstruction outcomes of PSTCR are better 
than those of TNN due to the powerful nonlinear mapping ability via 
deep learning. However, PSTCR ignores the low-rank characteristic of 
the multitemporal Sentinel-2 images. This model generates substantial 
artifacts and blurry textures in the cloudy regions of dates 09/05 and 
09/15/2018. For instance, the river in the simulated cloudy regions 
seems to be blurred by PSTCR in Fig. 4, especially for Sentinel-2 large 
area cloud removal. 

The proposed method outperforms on Sentinel-2 thick cloud removal 
for the time-series images compared with model-driven method TNN 
and data-driven method PSTCR. In the sixth row of Fig. 4, the proposed 
method can not only better maintain the spatial consistency but also 
ensure the detailed texture without an obvious blurry issue than TNN 
and PSTCR. The proposed method simultaneously utilizes the low-rank 
prior of the third-order tensor and the prominent feature expression 
ability of deep spatio-temporal prior for the multitemporal Sentinel-2 
image cloud removal. This notion also testifies the effectiveness of the 
combined strategy in DP-LRSVD for time-series images reconstruction. 
In addition, the quantitative evaluation indexes of the Sentinel-2 simu-
lated experiments are listed in Table 1. The proposed method in this 
work also validates the practicability for multitemporal images cloud 
removal. This method achieves the best CC, SSIM, RMSE, and SAM 
compared with the Sentinel-2 cloudy data, HaLRTC, BCPF, TNN, and 
PSTCR. 

b) Multitemporal GF-1 WFV results: Four time-series GF-1 images 
(acquired times: 07/30, 08/03, 08/07, and 09/09/2015 via GF-1 WFV 
over Wuhan, China) are imposed with the simulated cloud, as shown in 
the first row of Fig. 5. The second, third, fourth, fifth, and sixth rows are 
the reconstructed multitemporal images by HaLRTC, BCPF, TNN, 
PSTCR, and the proposed method in Fig. 5, respectively. We validate on 
16 m spatial resolution bands (NIR, red, green, and blue) in these time- 
series GF-1 WFV images. The false-color 800 × 800 results of band NIR, 
red, and green are displayed in Fig. 5. Evaluation indexes CC, SSIM, 

RMSE, and SAM of the GF-1 WFV simulated experiments are listed in 
Table 2. The optimal values in Table 2 are marked in bold format for 
comparison. 

TNN can recover the detailed textures for multitemporal images in 
the fourth row of Fig. 5. However, TNN poorly performs in terms of 
spatial context consistency between the simulated cloudy and the 
neighboring cloud-free regions. This phenomenon indicates that the 
global consistency and regional particularity are significant for time- 
series image thick cloud removal. PSTCR behaves better than TNN in 
terms of spatial context consistency in the fifth row of Fig. 5. Never-
theless, the spectral aberration and spatial blurry details disturb the 
reconstructing GF-1 results, especially at dates 08/03 and 08/07/2015. 
These issues also demonstrate the common limitations of deep learning- 
based methods for thick cloud removal in multitemporal images. 

The proposed method can effectively reconstruct the missing area for 
time-series GF-1 images in the sixth row of Fig. 5. This method performs 
better in terms of detailed texture recovery and spatial context consis-
tency compared with TNN and PSTCR. DP-LRSVD can fully utilize the 
low-rank property of the third-order tensor and the feature expression 
ability of deep spatio-temporal prior by means of the combined model- 
driven and data-driven methods. Besides, the proposed method achieves 
the best CC, SSIM, RMSE, and SAM compared with the GF-1 WFV cloudy 
data, HaLRTC, BCPF, TNN, and PSTCR in Table 2. This notion also 
validates the reliability of the presented framework for multitemporal 
image cloud removal. 

3.3. Real experiments 

In the real experiments, we select the Sentinel-2 and GF-1 cloudy 
time-series images as the testing objects. Similar to the simulated ex-
periments, the model-driven method TNN and data-driven method 
PSTCR are also utilized as the contrast algorithms. The detailed de-
scriptions and results are provided as follows: 

a) Multitemporal Sentinel-2 results: In the first row of Fig. 6, four 
time-series cloudy Sentinel-2 images (08/16, 08/31, 09/10, and 09/20/ 
2018 via Sentinel-2A/B L1C over Mechelen, Belgium) are polluted by 
thick cloud and shadow to a certain degree. We validate on 20 m spatial 
resolution bands (B12, B11, B8a, B07, B06, and B05) in these time-series 
Sentinel-2 images. The false-color 500 × 500 results of bands B11, B07, 
and B05 are displayed in Fig. 6. TNN shows serious artifacts and dis-
tortions in the second row of Fig. 6. Besides, TNN poorly performs in 
terms of spatial context consistency between the cloudy and the neigh-
boring clean regions for the circled area. This notion illustrates the 
instability for the model-driven method, especially for complex sce-
narios. PSTCR can well reconstruct the cloudy region in the third row of 
Fig. 6. Nevertheless, the cloud removal results reveal obvious “block” 
effects, such as Sentinel-2 data in 08/31 and 09/10/2018 for the circled 
area. The main reason is that PSTCR employs the patch group strategy 
for reconstruction. Therefore, the “block” effects are inevitably for 
PSTCR, especially for the circled area in the third row of Fig. 6. 

The proposed method outperforms on time-series image cloud 
removal in the fourth row of Fig. 6. The proposed method can not only 
better maintain the spatial consistency but also ensure the detailed 
texture without obvious blurry issue or “block” effects than TNN and 
PSTCR compared with the model-driven method TNN and data-driven 
method PSTCR. Meanwhile, the proposed method simultaneously uti-
lizes the low-rank prior of the third-order tensor and the prominent 
feature expression ability of deep spatio-temporal prior for multi-
temporal Sentinel-2 image cloud removal. This notion also testifies the 
effectiveness of the combined strategy in DP-LRSVD for Sentinel-2 time- 
series image reconstruction. 

b) Multitemporal GF-1 WFV results: Three time-series GF-1 WFV 
cloudy images (acquired times: 07/30, 08/03, and 08/07/2015 via GF-1 
WFV over Wuhan, China) are shown in the first row of Fig. 7. We vali-
date on 16 m spatial resolution bands (NIR, red, green, and blue) in these 
time-series GF-1 WFV cloudy images. The false-color results of bands 

Table 1 
Evaluation indexes (CC, SSIM, RMSE, and SAM) of the Sentinel-2 simulated 
experiments through HaLRTC, BCPF, TNN, PSTCR, and the proposed method.  

Method Evaluation Index (average value)  

CC SSIM RMSE SAM 

Cloudy 0.6628 0.7845 0.1983 9.6431 
HaLRTC 0.7857 0.8563 0.1246 6.2878 

BCPF 0.8486 0.8971 0.0952 1.5613 
TNN 0.9553 0.9386 0.0571 1.4984 

PSTCR 0.9648 0.9412 0.0509 1.2375 
Proposed 0.9817 0.9658 0.0383 0.9424  
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Fig. 5. Simulated cloud removal experiments for the multitemporal GF-1 WFV images (07/30, 08/03, 08/07, and 09/09/2015) through HaLRTC, BCPF, TNN, 
PSTCR, and the proposed method. 
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NIR, red, and green are displayed in Fig. 7. TNN can recovery the 
detailed textures for the multitemporal images in the second row of 
Fig. 7. However, TNN poorly performs in terms of spatial context con-
sistency between the simulated cloudy and the neighboring cloud-free 
regions, especially in the circled area. PSTCR behaves better than TNN 

in terms of spatial context consistency in the third row of Fig. 7. 
Nevertheless, the “block” effects and spatial blurry details disturb the 
reconstruction GF-1 results, especially at dates 07/30 and 08/07/2015 
in the circled area. The proposed method can effectively reconstruct the 
cloudy area for time-series GF-1 images in the fourth row of Fig. 7. The 
proposed method performs better in terms of detailed texture recovery 
and spatial context consistency compared with TNN and PSTCR. 

4. Discussions 

In this section, discussions in terms of the parameter sensitivity and 
model availability of the proposed method are presented. Then, the 
ADMM iteration optimization and 3D-ST Net effects are analyzed for 
thick cloud removal in time-series images. Finally, we discuss the cor-
relation between the number of multi-temporal scenes and reconstruc-
tion effects. The specific discussions are described as follows: 

Table 2 
Evaluation indexes (CC, SSIM, RMSE, and SAM) of the GF-1 simulated experi-
ments through HaLRTC, BCPF, TNN, PSTCR, and the proposed method.  

Method Evaluation Index (Average value)  

CC SSIM RMSE SAM 

Cloudy 0.6448 0.7535 0.2129 8.2129 
HaLRTC 0.7689 0.8346 0.1453 5.2129 

BCPF 0.8175 0.8627 0.1264 1.8743 
TNN 0.9163 0.8826 0.0837 1.6856 

PSTCR 0.9675 0.8943 0.0558 1.5294 
Proposed 0.9842 0.9359 0.0426 1.1828  

Fig. 6. Real cloud removal experiments for the multitemporal Sentinel-2 images (08/16, 08/31, 09/10, and 09/20/2018) through HaLRTC, BCPF, TNN, PSTCR, and 
the proposed method. 
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4.1. Parameter sensitivity 

In the proposed method, we utilize two manual parameter scaling 
factors, namely, β0 and step threshold η, for the ADMM iteration 
framework. Therefore, the parameter sensitivity of the presented 

method must be discussed. In Fig. 8(a) and (b), the RSME indexes of 
increasing parameters β0 and ηin the simulated Sentinel-2 and GF-1 
experiments are recorded, respectively. The red lines refer to the out-
comes of Sentinel-2, and the blue lines stands for the results of GF-1. 
Scaling factor β0 and step threshold η are varied from 0.005 to 0.05 

Fig. 7. Real cloud removal experiments for the multitemporal GF-1 WFV images (07/30, 08/03, and 08/07/2015) through HaLRTC, BCPF, TNN, PSTCR, and the 
proposed method. 
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and 1 to 1.9 in Fig. 8(a) and (b), respectively. Our parameter sensitivity 
analysis adopts the principle of controlled variables. 

The RMSE index first rapidly decreases before β0 = 0.02 and η = 1.3 
with the scaling factor β0 and step threshold ηincreasing in Fig. 8. Af-
terward, the RMSE index gradually increases in Sentinel-2 and GF-1 
experiments. Considering these parameter sensitivities, scaling factor 
β0 and step threshold ηare set as 0.02 and 1.3, respectively, in the cloud 
removal procedure. This situation also demonstrates the significance of 
the ADMM optimization for the proposed method. 

4.2. Iteration optimization 

The proposed DP-LRSVD utilizes the iteration optimization strategy 
and deep spatio-temporal prior for multitemporal image cloud removal. 
We need to discuss the meaning of ADMM iteration optimization and 
3D-ST Net. In Fig. 9(a), the RSME indexes of the increasing iteration 
number in the simulated Sentinel-2 and GF-1 experiments are recorded. 
The red lines denote the outcomes of Sentinel-2, and the blue lines 
represents the results of GF-1. The comparison results with/without 3D- 
ST Net in the simulated Sentinel-2 images are also displayed in Fig. 9(b). 

The RMSE index first rapidly decreases before the five iterations with 
the increasing iteration number and then gradually decreases until the 
final iterations in Fig. 9(a). The presented framework could quickly 
achieve the convergence condition through combing the deep spatio- 
temporal prior with low-rank tensor factorization. In contrast with the 
traditional tensor completion, the proposed method develops 3D-ST Net 
into the ADMM iteration optimization. This method can not only further 
enhance the context consistency between the cloudy and the adjacent 
cloud-free regions but also accelerate the ADMM iteration optimization 
without a time-consuming iteration in Fig. 9(b). This discussion also 
demonstrates the effectiveness of the proposed method for time-series 
image reconstruction. 

4.3. Number of multitemporal scenes 

We supplement a discussion to explore the correlation between the 
number of multi-temporal scenes and the reconstruction effects when 
50% of the areas for each Sentinel-2 image are covered by thick cloud to 
examine the performance of the proposed method according to the cloud 
cover rate. The number of multi-temporal scenes is set from 2 to 6, and 
the reconstruction evaluation indexes (CC) are illustrated in Table 3. 

Table 3 illustrates that the reconstruction accuracy gradually im-
proves with the increase in temporal scene number. When 50% of the 
areas of each Sentinel-2 image are covered by thick cloud, the CC of the 
proposed method can achieve 0.9519 through inputting three time- 
series images. The more temporal images are used, the better the thick 
cloud removal performs. This notion also verifies that the proposed 
method depends on the temporal complementarity and redundancy for 
thick cloud removal in multitemporal images. The low rank prior can be 
effectively reflected through more temporal images in the proposed 
framework. 

5. Conclusion 

We combine the deep prior with low-rank tensor decomposition in 
this study for thick cloud removal in time-series images. The low-rank 

Fig. 8. Parameter sensitivity (scaling factor β0 and step threshold η) of the proposed method in the two simulated GF-1 and Sentinel-2 experiments.  

Fig. 9. Discussions for ADMM iteration optimization on the GF-1 and Sentinel-2 images and with/without 3D-ST Net in the proposed method.  

Table 3 
Correlation between the number of multi-temporal scenes and reconstruction 
evaluation indexes when 50% of the areas for each Sentinel-2 image are covered 
by thick cloud.  

Number 2 3 4 5 6 

CC 0.9136 0.9428 0.9519 0.9532 0.9547  
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tensor SVD and tensor-product are employed for exploiting the struc-
tural property of multitemporal images. A deep 3D spatio-temporal CNN 
is utilized to ensure the context consistency between the cloudy and the 
adjacent cloud-free regions. ADMM iteration optimization is carried out 
until the reconstruction result meets the convergence condition. The 
proposed DP-LRTSVD can effectively eliminate the thick cloud in mul-
titemporal images through combining the model-driven and data-driven 
strategies. DP-LRTSVD outperforms on thick cloud removal in simulated 
and real time-series Sentinel-2/GF-1 experiments compared with the 
model-driven or data-driven methods. 

In our future work, more third-order tensor decomposition strategy 
and spatio-temporal priors will be exploited and introduced. We will 
also distinguish the cloud types and consider the integrative thin-thick 
cloud removal through introducing the available information within 
thin cloud-covered regions. 
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