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A B S T R A C T

Thick cloud and its shadow severely reduce the data usability of optical satellite remote sensing data. Although
many approaches have been presented for cloud and cloud shadow removal, most of these approaches are still
inadequate in terms of dealing with the following three issues: (1) thick cloud cover with large-scale areas, (2) all
the temporal images included cloud or shadow, and (3) deficient utilization of only single temporal images. A
novel spatio-temporal patch group deep learning framework for gap-filling through multiple temporal cloudy
images is proposed to overcome these issues. The global-local loss function is presented to optimize the training
model through cloud-covered and free regions, considering both the global consistency and local particularity. In
addition, weighted aggregation and progressive iteration are utilized for reconstructing the holistic results. A
series of simulated and real experiments are then performed to validate the effectiveness of the proposed
method. Especially on Sentinel-2 MSI and Landsat-8 OLI with single/multitemporal images, under small/large
scale regions, respectively.

1. Introduction

Satellite remote sensing has gradually become important in earth
observation tasks in recent years. Such as land-use change (Toure et al.,
2018), vegetation mapping and estimation (Erinjery et al., 2018), land
surface temperature retrieval (Weng and Fu, 2014), and environmental
pollution monitoring (Peng et al., 2016). However, the imagery ac-
quired by satellite sensors is inevitably contaminated by thick cloud and
its shadow (Cheng et al., 2014). This greatly reduces the data usability
(Qiu et al., 2017; Chen et al., 2019a). Clouds are generated by vast
floating water droplets, and cloud shadows are formed by optical linear
propagation covering. Therefore, authentic reflectivity information is
destroyed within the covered areas. Thus, reconstructing cloud-free and
shadow-free images through cloud and cloud shadow removal methods
is essential (Zhu and Woodcock, 2012b; Li et al., 2015, 2019c).

A variety of cloud removal algorithms have been presented over the
last two decades. Given that cloud and cloud shadow removal is a
process of missing information reconstruction (Wang et al., 2019),
cloud and cloud shadow removal approaches can be separated into four
main types, according to the type of dependent information (Shen et al.,

2015). (1) Spatial information based methods; (2) spectral information
based methods; (3) temporal information based methods; and (4) hy-
brid methods. Details of these methods are provided in the following.

1) Spatial information based methods: This type of method is the
most fundamental strategy for cloud and cloud shadow removal.
Regions without cloud or cloud shadow have similar contextual in-
formation between their adjacent cloudy regions (Guillemot and
Olivier, 2014). Meanwhile, the spatial relationship between the local
and non-local regions can also be incorporated in the cloud and cloud
shadow removal procedure (Van der Meer, 2012). The spatial in-
formation based methods include interpolation-based methods (Rossi
et al., 1994), exemplar-based methods (Criminisi el al., 2004; He and
Sun, 2014), spreading or diffusion based methods (Bertalmio et al.,
2003), and total variational methods (Chan, 2001). However, the ap-
plication ranges of these approaches are often severely limited by the
similar contextual structure or the small size of cloud areas. Therefore,
the spatial information based approaches are typically just suitable for
removing small clouds with regular texture (Ng et al., 2017). For large-
scale cloud cover or complicated regions, the reconstruction accuracy
and reliability are usually not satisfactory.
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2) Spectral information based methods: Different from the spatial
information based methods, the spectral information based methods are
addressing a different issue such as sensor failures or thin clouds (Lv
et al., 2016). For multispectral or hyperspectral data, the close re-
levance and similarity within the various spectral bands can be fully
utilized (Xu et al., 2019). It provides the possibility of recovering de-
graded regions by relying on the available complementary information.
For example, the Aqua MODIS band 6 contaminated by deadlines, can
be reconstructed through the closely correlated spectral bands
(Rakwatin et al., 2009). The thin cloud in multispectral data can also be
removed through spectral information (Shen et al., 2014). However,
spectral information-based methods can’t solve the shortcomings of
spatial-based methods for thick cloud.

3) Temporal information based methods: This type methods have
gradually been put forward for thick cloud removal in recent years
(Chen et al., 2019b). Because satellites can revisit the same location at
different times, the obtained multi-temporal data includes com-
plementary information. This can be employed to reconstruct thick
cloud covered areas (Xu et al., 2016; Zhang, et al., 2019b). The tem-
poral based methods assume that the category and geometric position
of ground objects rarely show changes over short time intervals (Gao
and Gu, 2017). From this point of view, an effective missing data re-
construction algorithm named the neighborhood similar pixel inter-
polator (NSPI) (Chen et al., 2011) was put forward for the Landsat
Enhanced Thematic Mapper Plus (ETM+) scan-line corrector (SLC)
malfunction problem. Subsequently, Zeng et al. (2013) presented a
weighted linear regression (WLR) model for filling the gaps of in-
complete ETM+ data. Chen et al. (2017) combined the spatio-temporal
dimension characteristics to remove cloud in Landsat-8 OLI data. In
conclusion, despite the favorable performance on thick cloud removal,
the large-scale area reconstruction problem is still a major obstacle.
Furthermore, the temporal differences between multitemporal images
may introduce negative effects for gap-filling, such as spectral re-
flectance change (Zhu et al., 2012a; Wang et al., 2016; Li et al., 2019a).

4) Hybrid based methods: These methods utilize both spatial,
temporal, and spectral information for cloud removal. For instance, Li
et al. (2014) developed a temporal group sparse learning algorithm
with multi-temporal and multi-spectral images. Ji et al. (2018) con-
sidered multiple temporal images as a four-order tensor with spatial,
temporal, and spectral dimensions. Then they reconstructed cloud
covered areas using the low-rank property and non-local com-
plementary information.

Although many methods have been widely applied to thick cloud
removal, the following limitations still exist in actual scenes.

(1) This inverse problem has the seriously ill-posed degree, where
large-scale thick cloud and cloud shadow cover cannot be well re-
constructed by most methods.

(2) Almost all temporal images are unavoidably influenced by cloud
and cloud shadow. However, most cloud removal methods usually
assume that complementary data must be cloud-free.

(3) Theoretically, redundant temporal information (information from
images acquired at the same areas but in different dates) leads to
more complementary information. (Di Mauro et al., 2017; Pelletier
et al., 2019). However, most existing methods can only utilize
single temporal images rather than multitemporal images.

Recently, on account of the powerful feature extraction and ex-
pression ability, deep learning (LeCun et al., 2015) has been applied for
many fields. For remote sensing data quality improvement tasks, sev-
eral solutions have been provided through a data-driven learning fra-
mework (Zhang et al., 2017). Such as SAR image despeckling (Zhang
et al., 2018a), hyperspectral image denoising (Zhang et al., 2019a), and
pansharpening (Wei et al., 2017; Yuan et al., 2018; Shen et al., 2019).

These methods can achieve state-of-the-art reconstruction effects.
In terms of missing information reconstruction such as thick cloud

removal, we developed an integrated spatial-temporal-spectral (STS)
feature learning model to solve missing data reconstruction (Zhang
et al., 2018a,b). However, STS cannot effectively reconstruct large-scale
areas due to several reasons. First, STS only deals with global in-
formation and does not consider the local particularity between missing
regions and their neighboring regions. Second, STS can only utilize
single temporal images. Lastly, STS can only employ the cloud-free
image as complementary data. However, most temporal images are still
influenced by cloud. These disadvantages reduce the effectiveness of
STS approach in cloud and cloud shadow removal.

To overcome these limitations, we propose a novel framework for
thick cloud and shadow removal. Based on STS, the proposed frame-
work combines the global-local spatio-temporal information in remote
sensing imagery with the non-linear learning capability of deep neural
network. The main contributions are as follows.

(1) A progressive spatio-temporal patch group learning framework for
thick cloud and cloud shadow removal is proposed. Arbitrary
numbers of temporal images can be employed to remove cloud and
cloud shadow through this framework. Furthermore, the integrity
of the temporal images, referring to the non-missing value need not
to be guaranteed, compared with STS and other methods.

(2) A global-local DCNN is presented to recover cloud and cloud
shadow-covered regions. Considering the global consistency and
local particularity, the proposed method applies a global-local loss
function in the supervised learning procedure. In addition,
weighted aggregation and progressive iteration are utilized to re-
construct the final cloud removal result in the proposed framework.

(3) A series of experiments are performed to validate the applicability
of the proposed method with Sentinel-2 MSI and Landsat 8 OLI
using single/multi-temporal images of small/large-scale scenes. The
quantitative evaluation and visual effects of the proposed method
are verified in both simulated and real experiments.

The rest of this paper is arranged as follows. Section 2 describes the
methodology for removing cloud and cloud shadow using spatio-
temporal information. Section 3 provides the experimental results of
Sentinel-2 MSI and Landsat 8 OLI data. Section 4 summarizes the
conclusions and expectations of the proposed work.

2. Methodology

The flowchart of the proposed method is displayed in Fig. 1. First,
cloud and shadow detection of the multitemporal data are executed to
obtain the mask data. Second, the spatial patch and its corresponding
multitemporal patches are stacked and sorted in a patch group fashion.
Third, a spatiotemporal patch group recovery model is developed to
reconstruct the information of the cloud-covered areas. Finally,
weighted aggregation is applied to all the reconstructed patches in-
cluded overlapping regions. Then the spatial data and cloud mask are
regenerated through progressive iteration until all the cloud-covered
areas are recovered. The details of each part are provided in Sections
2.1–2.4.

2.1. Multi-temporal imagery cloud and cloud shadow detection

Before the reconstruction procedure, obtaining accurate location
information for the cloud and shadow is a necessary operation (Li et al.,
2017; Baetens et al., 2019; Zhong et al., 2019). Therefore, we apply the
Fmask (Zhu et al., 2015) and MSCFF (Li et al., 2019b) method to obtain
cloud and shadow masks. In the generated binary mask, 0 and 1 re-
spectively represent the undamaged pixel, and the cloud or shadow
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pixel. In addition, cloud and shadow edge dilation of two pixels is
implemented to decrease the cloud and shadow detection errors. The
final masks of the multi-temporal data are then used to the next stage of
the workflow, as described in Section 2.2.

2.2. Multi-temporal patch group stacking and sorting

The purpose of this section is to establish multi-temporal patch
group. These patch groups include complementary information in series
images, as shown in Fig. 2. Notably, clouds and cloud shadows are non-
uniformly distributed in global areas. These complementary regions
have the same or similar texture information, which can be employed
for reconstructing cloud regions.

Therefore, the patch containing cloud or shadow is extracted
through image traversal. If the currently selected patch is cloud-free,
the window with the fixed stride is sequentially shifted until the end.
Then, temporal patch sorting is executed to find the most similar in-
formation. This operation can introduce reliable temporal information
rather than avoid polluted and invalid information. It can also reduce
model complexity for rapid and improved optimization and learning.

After obtaining the masks of multitemporal data, the spatial cloudy
patch PS with size ×W H is selected as the current reconstruction object
through image traversal. w hP ( , )S stands for the reflectance value of
pixel at location (w, h). Notably, cloudy and intact regions simulta-
neously exist in the selected spatial patch. Therefore, the integrity ratio
corresponding to PS is defined as IS in the proposed model. It is cal-
culated by the corresponding cloud masks. IT

t and similarity correlation
measurements CS T

t for the corresponding multi-temporal patches PT
t

are also evaluated. t stands for the t-th temporal patch. IT
t is the un-

damaged area ratio of the t-th temporal patch through its mask MT
t .

CS T
t and IT

t are calculated below:
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t , respec-
tively.

Fig. 1. Flowchart of the proposed spatio-temporal cloud and cloud shadow removal framework.

Fig. 2. Schematic diagram of complementary information.
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This step only focuses on the mutual undamaged regions between
the spatial and temporal patches to estimate the similarity for the
subsequent processing. The re-ranked sequence of the patch group PT

t is
then sorted by from high to low. Furthermore, the proposed method
removes these temporal patches with low IT

t values, because part of the
multitemporal patches is potentially contaminated by cloud. The se-
lection number is set as a fixed value. And the top temporal patches are
selected while the other temporal patches with low integrity ratio va-
lues are eliminated. The sensitivity analysis of the hyperparameters is
discussed in Section 3.4.

After patch group ranking and elimination, the sorted temporal
patches are selected as the complementary data for the following re-
covery model. All the sorted temporal patches are transformed through
linear regression. This operation can further reduce model complexity
and achieve effective optimization and learning.

= +a bP P·T
t

T
t (3)

Parameters a and b are determined by least-squares approximation.

=a V V V V
V V

¯ ¯ · ¯

( )¯ ¯
S T

t
S T

t

T
t

T
t2 2 (4)

=b aV V¯ · ¯
S T

t (5)

2.3. Spatio-temporal patch group recovery model

According to STS method (Zhang et al., 2018a,b), a novel learning
model for cloud and cloud shadow removal is developed. The entire
structure of the recovery model is depicted in Fig. 3. The patch group in
Section 2.2 is simultaneously set as the input data for the spatial and
corresponding temporal patches. The structure and modules of the
proposed model are also displayed in Fig. 3.

2.3.1. Spatiotemporal multi-scale feature extraction and fusion
A crucial characteristic representation usually counts on multi-scale

semantic and context to reconstruct cloudy areas. From this intrinsic
perspective, a spatiotemporal multiscale feature block is incorporated
in the reconstruction network. This model excavates deep character-
istics to provide multi-context relevance. Furthermore, multiscale
convolutional filters can obtain diverse receptive field scales, especially
for the scenarios including cloud-covered areas. As portrayed in Fig. 3,
the multiscale convolutional block comprises multiple convolutional
processing layers with a size of 3, 5, and 7 kernel filters. They

respectively dispose of the spatial and temporal data as follows:

= +f W P bS
k

S
k

S S
k (6)

= +f W P bT
k

T
k

T T
k (7)

where WS
k , WT

k , bS
k , and bT

k are the learnable parameters in the con-
volutional filters for the spatial and temporal data, and k stands for the
kernel filter sizes 3, 5, and 7. These convolutional filters are then col-
laboratively generated as various independent results. The three spatial
results of f S

3 , f S
5 , f S

7 , and the three temporal results of f T
3 , fT

5 , f T
7 are

jointly fused as an individual multi-channel characteristic result Fall as
follows:

= ConcatF f f f f f f( , , , , , )all S S S T T T
3 5 7 3 5 7 (8)

where Concat is utilized to aggregate the feature maps of the spatial and
temporal data with different convolutional kernel sizes. The spatial and
temporal features are integrated in union for the sequential operations
in the proposed recovery model.

2.3.2. Global-local deep convolutional neural network
After extracting the fused spatiotemporal features, a global-local

DCNN is used to recover the cloud and cloud shadow areas in the spatial
patch. The proposed model is constructed with 11 layers to mine non-
linear characteristics, as displayed in Fig. 3. All the layers employ 3 × 3
convolutional kernels with a stride equal to 1. These layers comprise
convolutional (Conv) and rectified linear unit (ReLU) layers in the 10
front layers and only a convolutional block in the last layer. The
numbers of feature maps within the different layers and the block
parameters are shown in Fig. 3. In particular, the last convolutional
layer in the proposed model outputs a single feature map for the fol-
lowing operations.

In terms of the loss function for model optimization, the Euclidean
loss function is utilized in the traditional image restoration tasks, such
as super-resolution (Dong et al., 2016) and image denoising (Yuan
et al., 2019). However, these methods only consider the integral in-
formation for data restoration. They ignore the particularity of the local
information, especially for the cloud and cloud shadow removal task.
Considering the global consistency and local particularity, the proposed
model utilizes a global-local loss function in the supervised learning
procedure as follows:

= +( ) · Local Global (9)

where stands for the model learning parameters. These parameters
are updated in the training procedure through Eq. (9) with a back-

Fig. 3. The spatio-temporal patch group recovery model.
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propagation algorithm. is the balancing parameter between the local
loss Local and global loss Global. They can be respectively defined as
follows:

= M M PLocal S S S F (10)

= PGlobal S F (11)

where MS is the corresponding patch mask of PS. stands for the point
multiplication operation between two matrices. represents the fea-
ture map of the last layer. The final restored patch RS is generated as
follows:

= +R M M P(1 )S S S S (12)

2.4. Weighted aggregation and progressive iteration

After traversing all available patches of spatial data, overlapping
regions always exist in the multiple restored patches. Therefore,
weighted aggregation is utilized to reconstruct the final result through
these patches, as shown in Fig. 4.

From the aspect of the recovery reliability, the larger the spatial
integrity ratio IS is, the more believable the complementary information
is. The operation of weighted aggregation for the first iterative global
result AS

1 is executed as follows:

= =

=

A
R·

S
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µ
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µ

I

1 1

1
1

1

1
1

S
i

S
i (13)

where µ is the number of the current restored spatial patches with same
cloud and cloud shadow regions. The new global spatial mask AM

1
S is

regenerated after the following aggregation procedure:

=A A M M M···S S SM M
1 0 1 2

S S (14)

where represents the mask patch number. MS stands for the updated
mask patch after reconstructing the corresponding spatial patch.

In practice, weighted aggregation cannot remove all the clouds and
shadows in a single iteration because of the limited areas. Therefore, a
progressive iteration strategy is applied to recover the integrated ima-
gery in the proposed framework.

The original spatial cloudy image AS
0 , the original spatial mask AM

0
S ,

the temporal images AT
t , and the masks At

MT are integrally set as the
input data. By traversing Aiter

MS under patch mode, the patch group is
sorted according to Section 2.2. The current spatial patch is then re-
constructed using the model presented in Section 2.3. By progressively
reconstructing the spatial data in Eq. (13), the new spatial mask is
iteratively regenerated according to Eq. (14) until the final result is

obtained. The workflow of the progressive iteration algorithm is shown
below.

Progressive iteration algorithm for cloud and cloud shadow removal

Input: Cloudy data AS
0 , mask A SM

0 , temporal data AT
t , masks A T

t
M , threshold IS

Initialization: iter = 0, =A AS
iter

S
0 , =A AS

iter
SM M

0

Iteration: until A S
iter
M is cloud-free

Traversal A S
iter
M through global window traversal

If =I 1S or <I IS S Continue;
Else
Sorting the spatio-temporal patch group in Section 2.2
Reconstructing the current spatial patch in Section 2.3

End spatial patch reconstruction
End Traversal
iter = iter + 1
Update AS

iter and A S
iter
M through Eqs. (13) and (14)

End Iteration
Output: The final cloud-free result AS

iter

3. Experimental results

The simulated and real experiments were presented to verify the
effectiveness of the proposed framework. Sentinel-2 MSI (20 m spatial-
resolution, five-day temporal resolution, L1C level product) and
Landsat 8 OLI data (30 m spatial resolution, 16-day temporal resolu-
tion, L1 level product) were employed in this work. Small/large-scale
scenarios and single/multitemporal images were also employed in the
experiments. The source code of this work is available at https://github.
com/WHUQZhang/PSTCR.

3.1. Model training and parameter setting

We organize the detailed information of the proposed method: (1)
Training data descriptions; (2) Hyperparameter settings; and (3)
Operating environment.

1) Training data descriptions: For the training data of the pro-
posed model, a sequence of seven different cloud-free Landsat Thematic

Fig. 4. Weighted aggregation and progressive iteration.

Table 1
Comparison of the spectral central wavelengths (nm) of Sentinel-2 and Landsat-
8.

Data Blue Green Red NIR

Sentinel-2 490 560 665 842
Landsat-8 480 560 655 865
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Mapper (TM) images from October 25, 2004 to February 14, 2005
(image size 2720 × 3200, blue, green, red, and NIR bands, 16-day
revisit period) was used. These data organized into temporal groups.
The training data for the seven temporal Landsat images mainly cover
the area of Darlington Point in Australia (34°36́–35°3́S,
145°40́–146°2́E). Band normalization (min–max scaling per band) was
applied for the training and test data. The training data included dif-
ferent spectra from the blue, green, red, and NIR bands. This can ensure
the spectral generalization capability of the proposed method. The
comparison of the spectral central wavelengths of Sentinel-2 and
Landsat-8 are listed in Table 1.

Need for training in deep learning-based methods (STS-CNN and the
proposed method) is that time-series images are cloud-free. Then the
synthetic cloud masks were added into the original cloud-free data as
the cloudy data for calculating training loss. Besides, the need for
testing in state-of-the-art methods must obtain at least one cloud-free
image; And the need for testing in the proposed method can utilize
multiple time-series images.

Temporal patch groups were established by traversing the temporal
groups with the 21,760 patches, size of 40 × 40. Using the augmen-
tation data strategy (multi-angle data spin and multiscale resolution),
174,080 patches are finally generated as the training samples. The point
multiplication operation was performed for generating training data.
The simulated mask data were generated in the Landsat 8 OLI data with
cloud and cloud shadow using Fmask 4. Some parts were used as the
training patch mask.

2) Hyperparameter settings: The related hyperparameters in the
proposed method are given in the following. The similarity correlation
measurement CS T

t was also set as 0.85 for sorting the patch group. The
integrity threshold IS is defined as 0.3 for all the spatial patches. The
balancing parameter was determined as 0.15 for the global-local loss
function. The temporal number t was set as 4 for the training and test
procedures. The number of trainable parameters in the deep learning
network is about 1488 K. The proposed framework was adaptively
trained through the Adam optimization approach (Kingma and Ba,
2014), with fixed hyperparameters of 0.9, 0.999, and 10−8. In addition,
the learning rate was varied. It started from 0.001 with an attenuation
coefficient of 0.8 at intervals of 20 epochs. The entire training stage of
the proposed model was set as 200 epochs.

3) Operating environment: The Caffe structure (Jia et al., 2014)
was employed to generate the final training model on a Dell T7910
workstation. The proposed method executed in Windows 10 under GPU
acceleration mode. The time taken to train the proposed method was
about 21 h 20 min.

3.2. Simulated data experiments

In the simulated experiments, the practicability of the proposed
framework under various conditions (single/multitemporal and large/
small scales of missing areas) was verified. Special scenarios were si-
mulated by the three cases below:

(1) Case 1 (large missing areas, with single-temporal data): The spa-
tial image was corrupted by large missing areas. This case employed
a single-temporal image as the complementary information, as
displayed in Fig. 5(a)–(c). The original data and temporal data
(20 m spatial-resolution, 10 × 10 km) were acquired by the Sen-
tinel-2 MSI sensor on July 19 and July 29, 2018, respectively, over
Wuhan in China.

(2) Case 2 (multiple small missing areas, with single-temporal data):
The spatial image was corrupted by multiple small missing areas.
This case employed a single-temporal image as the complementary
information, as displayed in Fig. 6(a)–(c). The original data and
temporal data (30 m spatial-resolution, 15 × 15 km) were acquired
by the Landsat 8 OLI sensor on April 11 and April 27, 2014, in
Colorado, U.S.

(3) Case 3 (large/small missing areas, with multi-temporal data):
Sequential remote sensing images were corrupted by various types
of missing areas. This case employed multiple temporal images as
the complementary information, as displayed in Fig. 8(a)–(e). Five
sequential images (20 m spatial-resolution, 10 × 10 km) were ac-
quired by the Sentinel-2 MSI on September 5, 15, 20, October 5,
and 15, 2018, in Belgium.

The proposed framework was evaluated with mNSPI (Zhu et al.,
2012a), WLR (Zeng et al., 2013), AWTC (Ng, et al., 2017), and STS
(Zhang et al., 2018b). The links to source codes for the competitors are
also displayed below:

(1) mNSPI: https://xiaolinzhu.weebly.com/.
(2) WLR: http://sendimage.whu.edu.cn/send-resource-download/.
(3) AWTC: https://sites.google.com/site/tengyuji90/.
(4) STS: https://github.com/WHUQZhang/STS-CNN.

The quantitative evaluation indexes of the correlation coefficient
(CC), structural similarity index measure (SSIM), and root mean square
error (RMSE), were all used to assess the recovery effects of the dif-
ferent algorithms. The evaluation indexes for Cases 1 and 2 are listed in
Table 2. Fig. 5(d)–(h) show the results of Case 1 in the five methods for
Sentinel-2 MSI data. Fig. 6(d)–(h) show the results of Case 2 in the five
methods for Landsat 8 OLI data. Fig. 7 displays the scatter plots of the
reconstructed regions for the different algorithms. Fig. 8 presents the
results of Case 3 for the multiple sequence data.

In Cases 1 and 2, the regions reconstructed by mNSPI, AWTC, STS,
and WLR contain some spectral distortion, as indicated in Figs. 5 and 6.
Furthermore, the restored areas within the red circles through WLR
exhibit a lack of contextual continuity under Case 2. The main reason
may be possibly the intricate and non-linear temporal relations. Thus,
these relations cannot be clearly expressed using a linear regression
strategy. mNSPI and STS demonstrated poor performance under Case 1.
Both approaches exhibited vague details and content differences around
the marginal regions of the reconstruction results under Case 2. These
results indicate that most approaches cannot fit the complex relations
for the reconstruction of large cloud and cloud shadow-covered areas.
However, in both cases, the proposed framework showed satisfactory
performance in preserving spectral consistency, as displayed in the re-
constructed images in Fig. 5(h) and the red circles in Fig. 6(h). The CC,
SSIM, and RMSE values listed in Table 2 also suggest that the proposed
method outperforms mNSPI, WLR, and STS. The scatter diagrams and
their CCs in both cases also imply the reconstruction precision of the
proposed methods, as presented in Fig. 7.

In Case 3, we consider that the multitemporal sequence of remote
sensing images is almost totally disturbed by cloud and its shadow. The
situation is simulated to further test the effectiveness in a challenging
scenario (top row of Fig. 8). Unlike Cases 1 and 2, Case 3 involved five
temporal images as the reconstruction objects. All of them are con-
taminated with cloud and cloud shadow. A distinct advantage of the
proposed method is that the reconstruction framework can completely
utilize the available and highly correlated spatiotemporal information.
By contrast, mNSPI, STS, WLR, and most other cloud removal methods
can only be employed for single temporal imagery. This condition is
rarely the case for actual optical Earth observation systems. Multi-
temporal sequential images were simulated with cloud cover (top row
of Fig. 8) to deal with this actual scenario. The proposed method can
simultaneously recover multiple incomplete images. It can also preserve
the semantic context and acquire credible results (middle row of Fig. 8).
In addition, the scatter diagrams and their CCs verify the reconstruction
accuracy of the proposed framework (bottom row of Fig. 8).

3.3. Real-data experiments

Three cloudy data sets presented in Figs. 9, 10, and 12 were
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Fig. 5. Case 1. (20 m spatial-resolution; 10 × 10 km; single-temporal data; pseudo-color: B05, B8A, B12 in Sentinel-2 MSI; from Wuhan, China.) (a) Original data
from July 19, 2018. (b) Simulated cloud-covered area. (c) Data from July 29, 2018. (d)–(h) Recovery results of mNSPI, AWTC, STS, WLR, and the proposed method.

Fig. 6. Case 2. (30 m spatial-resolution; 15 × 15 km; single-temporal data; true-color: red, green, and blue bands in Landsat 8 OLI; from Colorado, U.S.) (a) Original
data from April 11, 2014. (b) Simulated cloud cover. (c) Data from April 27, 2014. (d)–(g) Results of mNSPI, AWTC, STS, WLR, and the proposed method. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Quantitative evaluation indexes in the simulated experiments of Case 1 and 2.

Index Band Case 1: Sentinel-2 MSI in Fig. 5 Case 2: Landsat-8 OLI in Fig. 6

mNSPI AWTC WLR STS Ours mNSPI AWTC WLR STS Ours

CC B05 0.937 0.947 0.958 0.915 0.981 Blue 0.973 0.988 0.985 0.986 0.993
B8A 0.964 0.965 0.963 0.962 0.991 Green 0.988 0.990 0.991 0.986 0.996
B12 0.968 0.967 0.962 0.940 0.991 Red 0.974 0.987 0.981 0.989 0.991
Mean 0.957 0.960 0.961 0.939 0.988 NIR 0.965 0.969 0.974 0.977 0.982

SSIM B05 0.826 0.889 0.905 0.887 0.959 Blue 0.935 0.967 0.959 0.963 0.979
B8A 0.815 0.874 0.918 0.856 0.933 Green 0.948 0.975 0.974 0.983 0.988
B12 0.798 0.836 0.900 0.805 0.930 Red 0.954 0.962 0.952 0.958 0.976
Mean 0.813 0.866 0.908 0.849 0.941 NIR 0.947 0.958 0.956 0.961 0.968

RMSE B05 0.067 0.059 0.057 0.072 0.028 Blue 0.044 0.029 0.032 0.031 0.022
B8A 0.059 0.054 0.047 0.065 0.032 Green 0.032 0.022 0.025 0.021 0.020
B12 0.066 0.061 0.047 0.078 0.029 Red 0.038 0.033 0.037 0.037 0.021
Mean 0.064 0.058 0.051 0.072 0.029 NIR 0.042 0.041 0.039 0.036 0.031
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employed in the real-data experiments. The Sentinel-2 MSI and Landsat
8 OLI cloud removal results through single corresponding temporal
image are respectively shown in Figs. 9 and 10. Fig. 12 shows the
multitemporal image sequence cloud removal results for the large-scale
full Sentinel-2 scenario.

1) Sentinel-2 MSI/Landsat 8 OLI cloud and shadow removal:
Fig. 9 depicts the Sentinel-2 real-data cloud and shadow removal ex-
periments (10 × 10 km, 20 m spatial resolution, single temporal data)
conducted over Wuhan, China. Fig. 10 depicts the Landsat 8 real-data
cloud and shadow removal experiments (24 × 24 km, 30 m spatial
resolution, single temporal data) conducted over Colorado, U.S.

Temporal difference inevitably exists in Figs. 9 and 10 due to the scene
changes and radiation differences. In terms of the LR, mNSPI, and STS
methods, spectral differences and blurry details are observed in Figs. 9
and 10. This condition possibly neglects the local particularity. WLR
shows fragmentation in Figs. 9(g) and 10(g) due to the intricate and
non-linear temporal relations. By contrast, the proposed approach
outperforms the other methods. It can suppress spectral differences and
ensure the continuity of the texture patterns (such as the rivers in
Figs. 9(h) and 10(h)). In Fig. 9, urban areas and rivers are blurry and
mixed by WLR, mNSPI, and STS. While the proposed method obtains
sharp results in these areas. In Fig. 10(f), the reconstruction results of

Fig. 7. Scatter diagrams in reconstructed regions of mNSPI, STS, WLR, and the proposed method.

Fig. 8. Case 3: Sentinel-2 MSI multi-temporal data sequence cloud removal experiments (20 m spatial-resolution; 10 × 10 km; five temporal images) over Mechelen
in Belgium. Top row: simulated data; middle row: reconstruction results; bottom row: scatter plots.
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STS in the mountainous areas show serious ambiguity and noise dis-
tortion. In Fig. 10(e) and (g), the mountain cloud shadow areas contain
radiation changes in mNSPI and WLR. The main reason is the com-
plexity and heterogeneity of this mixed scenario.

Runtime comparisons of the different methods for the real-data
experiments is shown in Figs. 9 and 10. They are also provided in
Table 3 (Operating system: Windows 10, Language: MATLAB R2018a,
CPU: Intel E5-2609@1.9 GHz&6Cores, GPU: NVIDA TITAN X, RAM: 16-
GB). The proposed method performs the high efficiency due to the su-
periority of data-driven strategy.

To further verify the effectiveness of results, land-cover classifica-
tion results in Figs. 9 and 10 were produced for mNSPI, STS, WLR, and

the proposed method. The land-cover classification results were ac-
quired with the maximum likelihood supervised classifier (Otukei and
Blaschke, 2010). The classification elements comprised the following
categories: residential, vegetation, water, bare soil, and rock. The
sample regions were manually chosen from the cloud-free regions. The
classification results are displayed in Fig. 11. Table 4 lists the overall
accuracy (OA) and kappa coefficient values. For the proposed method,
the values of OA and kappa are both superior to other algorithms. The
reconstructed roads and rivers are clear and continuous in Fig. 11. In
comparison, the road classes by WLR are fragmentary. And the re-
constructed results of mNSPI and STS contain some misclassified cate-
gories. These results verify the importance of the proposed framework

Fig. 9. Sentinel-2 MSI real-data experiments (20 m spatial-resolution; 10 × 10 km, single-temporal data) over Wuhan, China. (a) Original data from July 19, 2018.
(b) Cloud and cloud shadow mask of (a). (c) Temporal data from July 19, 2018. (d) LR. (e) mNSPI. (f) STS. (g) WLR. (h) Proposed.

Fig. 10. Landsat-8 OLI real-data experiments (30 m spatial-resolution; 24 × 24 km, single-temporal data) over Colorado, U.S. (a) Original data from Jan 24, 2015.
(b) Cloud and cloud shadow Mask of (a). (c) Temporal data from Feb 9, 2015. (d) LR. (e) mNSPI. (f) STS. (g) WLR. (h) Proposed.
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for subsequent applications.
2) Multi-temporal sequence and large-scale full scenarios of

Sentinel-2 MSI: Four Sentinel-2 MSI images were contaminated by
thick/thin cloud and shadow in different degrees, as shown in Fig. 12.

The selected sequence images were large-scale with full scenarios. De-
tails of these data are provided in Table 5.

The original images are shown in the top row of Fig. 12. The cor-
responding masks generated by MSCFF (Li et al., 2019b) are shown in

Fig. 11. Classification results of the different methods in the cloud and cloud shadow covered regions.

Fig. 12. Sentinel-2 MSI large-scale real-data experiments (20 m spatial-resolution; 5490 × 5490; 110 × 110 km; pseudo-color: B05, B07, B11; four temporal
images).

Table 3
Runtime comparison (Second) of the real experiments (Testing/Training time).

Data LR mNSPI STS WLR Proposed

Sentinel-2 0.25/- 1.36/- 0.28/23 h 11.73/- 1.16/21 h
Landsat-8 0.41/- 3.27/- 0.49/23 h 25.62/- 6.48/21 h

Table 4
Quantitative classification indexes (OA/Kappa) for Fig. 10.

mNSPI STS WLR Proposed

Fig. 9 74.4%/0.628 69.5%/0.587 76.8%/0.646 81.3%/0.695
Fig. 10 76.8%/0.647 64.5%/0.549 77.3%/0.652 79.4%/0.683
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the middle row of Fig. 12. The cloud and shadow removal results are
displayed in the bottom row of Fig. 12. From the overall visual per-
spective, the proposed method can synchronously protect semantic
contextual information. In addition, the large missing areas caused by
cloud and shadow can be well recovered. The global and two local
zoomed results of the original and reconstructed results for September
15, 2018, are provided in Fig. 13. These results verify the effectiveness
of the proposed cloud removal framework under large-scale, multi-
temporal, and large-area reconstruction scenarios.

3.4. Further discussion

3.4.1. Parameter sensitivity analysis
The simulated and real-data experiments verified the cloud and

cloud shadow removal capability of the proposed framework. The
parameter sensitivity of this model is discussed in this part.

The influence of parameter on the reconstruction result is first
discussed. Section 2.3 shows that plays a key role in the global–local
loss function. The proposed method was applied for Cases 1 and 2 de-
scribed in Section 3.1. For a quantitative assessment, the RMSE values
for different values of are plotted together in Fig. 14(a). As in-
creases, the RMSE initially declines and then increases later in Cases 1
and 2. The RMSE reaches the lowest value when is equal to 0.15. This
represents the optimal reconstruction accuracy. Fig. 14(a) shows that
plays an important role in cloud and shadow area reconstruction.

The sensitivity of the temporal parameter t was also analyzed, as
shown in Fig. 14(b). In test Case A, the temporal series of images are all
cloudless data. By contrast, the temporal series of images are all cloudy

data of different degrees in test Case B. As the temporal threshold t
increases, the RMSE first slightly increases and then decreases in Case
A. While the RMSE quickly decreases and then remains stable in Case B.
Considering both cases, the temporal number threshold t as equal to 4 is
recommended in the reconstruction procedure.

3.4.2. Linear regression validation
In Section 2.2, we employ linear regression transformation to fur-

ther reduce model complexity. Therefore, the effectiveness of with/
without this operation is then discussed in the proposed framework. In
the training and testing procedure, the proposed model can also learn
without linear regression transformation. Models with linear regression
transformation perform better and more stable in the training and
testing procedures, as depicted in Fig. 15. Due to the temporal atmo-
sphere variation, the radiation difference is observed in in Fig. 12.
Global radiation difference may introduce negative effects for opti-
mizing the training model. Therefore, linear regression transformation
can reduce this negative effect, which performs better than models
without linear regression transformation.

4. Conclusions

This study proposed a progressive spatio-temporal patch group
learning framework for cloud and cloud shadow removal. The global-
local loss function is presented to optimize the training model through
cloud-covered and free regions, considering both the global consistency
and local particularity. In addition, weighted aggregation and pro-
gressive iteration are utilized for reconstructing the holistic results. It
overcomes some limitations of the existing methods (i.e., large-scale
cloud cover, incomplete temporal information, and temporal-series
images). The experiments on Sentinel-2 MSI and Landsat 8 OLI data
verified the effectiveness of the proposed framework through single/
multitemporal data under small/large-scale scenarios.

Although the proposed method can achieve a satisfactory re-
construction effect in thick cloud and shadow removal, several issues
must be considered. First, the cloud and cloud shadow-covered areas
are regarded as invalid information. It is wasteful for the reconstruction
because many regions may still have useful ground information.
Second, the proposed method cannot reconstruct cloudy areas without
complementary temporal information. In future research, thin cloud,
thick cloud and cloud shadow regions will be separately reconstructed

Table 5
Details of the multi-temporal sequence images used in the real-data experi-
ments.

Sensing date Satellite
sensor

Row/col
number

Field size Cloud
cover
ratio

2018-08-16 S2B N0206,
R079

110 × 110 km(5490 × 5490) 14.76%
2018-08-31 S2A 51.83%
2018-09-05 S2B 10.97%
2018-09-15 S2B 27.35%

Fig. 13. Global and local zoomed results (original and reconstruction results for 2018.09.15 of Fig. 12).
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to overcome the limitation. Besides, cloudy regions without any cloud-
free temporal information must be considered through spatial auto-
correlation.
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