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Abstract—Urban water is important for the urban ecosystem.
Accurate and efficient detection of urban water with remote sensing
data is of great significance for urban management and planning.
In this article, we proposed a new method by combining Google
Earth Engine (GEE) with a multiscale convolutional neural net-
work (MSCNN) to extract urban water from Landsat images,
which can be summarized as “offline training and online pre-
diction” (OTOP). That is, the training of MSCNN is completed
offline, and the process of urban water extraction is implemented
on GEE with the trained parameters of MSCNN. The OTOP
can give full play to the respective advantages of GEE and the
convolutional neural network (CNN), and can make the use of
deep learning method in GEE more flexible. The proposed method
can process the available satellite images with high performance,
without data download and storage, and the overall performance
of urban water extraction in the test areas is also higher than that
of the modified normalized difference water index (MNDWI) and
random forest classifier. The results of the extended validation
in the other major cities of China also showed that OTOP is
robust and can be used to extract different types of urban water,
which benefits from the structural design and training of MSCNN.
Therefore, OTOP is especially suitable for the study of large-scale
and long-term urban water change detection in the background of
urbanization.

Index Terms—Convolutional neural network, google earth
engine, urban water, water extraction.

I. INTRODUCTION

URBAN water is a significant part of the urban ecosystem
and plays an important role in human life and urban

economic development, such as water supply, flood control,
tourism, and urban heat island regulation [1], [2]. Urban water
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types include rivers flowing through urban areas, and natural
or man-made lakes, ponds, and reservoirs. However, in recent
decades, due to the impact of human activities and global climate
change, land use/cover in urban areas has undergone severe
changes, resulting in dramatic changes in the distribution and
abundance of urban water [3], [4]. This not only hinders the
sustainable development of urban water resources, but also af-
fects the normal function of the urban ecosystems [5]. Therefore,
an objective and accurate understanding of the spatio-temporal
distribution characteristics of urban water is essential for urban
planning and development.

Satellite remote sensing technology has been widely used in
the mapping of water, because of its wide range of observations
and relatively low cost [6], [7]. Previous studies have proposed
many methods for water extraction from satellite images. The
water index methods are extensively used because of their easy
implementation and high computational efficiency. Examples
of such water indices are the normalized difference water index
(NDWI) [8], the modified normalized difference water index
(MNDWI) [9], and the automatic water extraction index (AWEI)
[10]. These water indices can enhance the water information
based on the spectral reflectance characteristics of water in the
visible and infrared bands. However, it is difficult to deter-
mine the optimal thresholds for different images to effectively
distinguish between water and non-water, because the spectral
characteristics of water vary both spatially and temporally [11].
Furthermore, for urban water extraction, these indices also
have the problem of easily confusing urban water with low-
albedo non-water surfaces, such as asphalt roads and building
shadows [10].

Many machine learning methods can also be used to extract
urban water from satellite images, to improve the classification
accuracy, such as maximum likelihood estimation (MLE) [12],
[13], support vector machine (SVM) [14]–[16], and random
forest [17]–[19]. Most of these methods can effectively learn
the characteristics of water and can distinguish it from other
objects in the case of accurate training samples. However, in
addition to being reliant on high-quality training data, it is
also necessary to select appropriate combinations of features
for these methods, which may include spectral, textural, and
shape features, especially in urban areas. The feature selection
directly affects the stability of the prediction, and the design of
the features is not only time-consuming and laborious, but also
requires rich prior experience to make up for the shortcomings
of the data mining.
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As a subset of machine learning, deep learning, and especially
convolutional neural networks (CNNs), has also demonstrated
its effectiveness in image processing in recent research [20]–
[22]. The greatest advantage of CNNs is their strong ability
to extract multiscale and multilevel features. Some scholars
have used CNNs to extract water from different types of im-
ages, and the results showed that CNNs can accurately dis-
tinguish between water and ice/snow, cloud shadows, and ter-
rain shadows, without additional auxiliary materials [23]–[26].
However, most of these studies were of small-scale or short-
term. For large-scale and long-term urban water extraction, the
download and storage of massive satellite images and the re-
quirement for high computational performance are unavoidable
challenges.

Google Earth Engine (GEE) is a cloud platform dedicated to
geographic data processing and analysis, which can be used to
solve these problems. GEE provides massive global geospatial
data and many excellent image-processing algorithms, and all
the processing is parallel [27], [28]. These advantages enable
researchers to perform large-scale and long-term analysis with
minimal cost and equipment [29]–[33], including surface water
mapping [34]–[37]. However, to date, the function of deep
learning on GEE is still developing. The existing research
on the combination of GEE and deep learning has mainly
used GEE as the data source or as a platform for creating
training and test datasets, whereas the training and testing of
the deep learning models were undertaken on other platforms
[38]–[40]. However, this approach does not fully utilize the
advantages of GEE, which is designed specifically for managing
big data.

Therefore, in this article, we propose a new method by
combining GEE with a CNN model to detect urban water.
The completed CNN model, which is called the multiscale
convolutional neural network (MSCNN), is trained offline using
selected Landsat images and the corresponding water masks.
The trained model parameters are uploaded to GEE and used
to simulate the process of MSCNN’s urban water detection to
complete the urban water extraction of Landsat images on GEE.
The proposed framework can be summarized as “offline training
and online prediction” (OTOP). The goal of the OTOP method
is to provide a more flexible way to combine the preferred
deep learning model and GEE. The proposed framework can
make full use of the high-precision advantage of CNNs and the
massive data storage and powerful data-processing abilities of
GEE, so as to achieve efficient and accurate urban water de-
tection and provide technical support for long-term, large-scale
research.

II. EXPERIMENTAL DATA AND AREAS

A. Experimental Data

Based on the advantages of the relatively high spatial resolu-
tion (30 m) and long observation records (1972 to the present),
Landsat data have become one of the most commonly used data
types for monitoring the long-term changes of water [41]–[46].
The Landsat surface reflectance (SR) data on GEE were selected
to ensure the consistency of the data. The Landsat Thematic

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+)
SR data were generated from the Landsat standard Level 1
Terrain-corrected (L1T) images from the USGS archives with
the Landsat Ecosystem Disturbance Adaptive Processing Sys-
tem (LEDAPS) algorithm [47], and the Landsat Operational
Land Imager (OLI) SR data from the USGS archives were
processed with the Landsat Surface Reflectance Code (LaSRC)
algorithm [48].

The characteristics of urban water vary, due to the diversity of
the urban terrain and urban development plan. In order to ensure
the strong generality and robustness of the OTOP method, the
selection of training data needed to consider as many cases as
possible. Therefore, in this article, 36 Landsat images covering
36 major cities in China, most of which are provincial capitals
and municipalities, were chosen as the experimental data. These
36 cities basically represent the situations of urban water under
the different climate, topography, and development levels in
China. The 36 images we used were acquired at different times
and came from three different sensors: Landsat TM, ETM+,
and OLI. These images also covered many different surface
features. In addition, cloudy images were also included in the
experimental data, because the effects of clouds and cloud
shadows are inevitable in the real world. In order to increase
the differentiation between water and the other objects in urban
areas, the sample size of the urban areas was appropriately
increased in the training data. Therefore, the CNN model trained
by the dataset selected under the multiple considerations could
be used for the extraction of urban water in different cities of
China at different times. The spatial distributions and acquisition
times of the selected images are shown in Fig. 1 and Table I.

The water masks of the 36 selected Landsat images were
manually drawn by referring to the original images and the
high-resolution images of the same periods on Google Earth.
The mapping of the water masks followed uniform standards,
including: 1) the water bodies of less than 4 pixels were not
delineated; 2) it is not easy to determine the slender water bodies
with a width of less than 2 pixels, so these were ignored; and 3)
according to actual experience, the mixed pixels located at the
edges of water areas were identified as water if the water features
were obvious, otherwise as non-water. Finally, the manually
labeled reference water masks were created by setting the pixel
values of water and non-water to 1 and 0, respectively.

B. Test Areas

For the accuracy verification of the OTOP method for urban
water extraction, we chose the central urban areas of Changchun,
Wuhan, Kunming, and Guangzhou as the test areas. The extents
of the central urban areas were determined by the latest urban
planning records for each city.

Changchun is located in the Northeast Plain of China, and the
water in the territory is mainly tributaries of rivers. Wuhan, lo-
cated in the Jianghan Plain in Central China, is dotted with nearly
a hundred lakes, and is known as the “city of a hundred lakes”.
Kunming is located in the middle of the Yunnan-Guizhou Plateau
in Southwestern China, where most of the water bodies are
plateau lakes and reservoirs. Guangzhou is a coastal city, located
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Fig. 1. Spatial distribution of the experimental data from China. The blue and red boxes represent the spatial locations of the images used for training and testing
in the accuracy assessment, respectively.

TABLE I
WRS-2 PATH/ROW, THE ACQUISITION TIME AND THE CORRESPONDING CITIES OF LANDSAT TM, ETM+, AND OLI IMAGES USED IN THIS ARTICLE

in a hilly area, with a developed river system and a vast water
area. These four cities cover all the main types of urban water,
with different depths, turbidities, and surface morphologies. The
spectral features of the built-up areas of the four cities are also
different, covering most of the major challenges affecting the
extraction of urban water, such as building shadows, low-albedo

roofs, and roads. The images of the four cities used for the
testing were also from different sensors. Thus, the accuracy
assessment of the urban water extraction in these four cities
could adequately reflect the ability of the OTOP method. In the
experiment, the data of the other 32 cities were used for the model
training.
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Fig. 2. Flow chart of the OTOP framework.

III. METHODOLOGY

The flow chart of the proposed OTOP framework is shown
in Fig. 2. The framework is divided into two main parts: 1)
offline training with MSCNN, and 2) online prediction on GEE.
Details of the different components are provided in the following
sections.

A. Offline Training

1) Data Preparation: The training data and test data con-
sisted of Landsat TM/ETM+/OLI SR images and the corre-
sponding water masks which were manually created. To better
eliminate the interference of building shadows in the water
extraction, the training data included not only the images and
water masks of the 32 cities, but also the data of the built-up
areas in these images.

The input of the network model was the three visible bands,
the near-infrared band, and the two short-wave infrared bands
of Landsat imagery. The pixel values of the SR images were
first unified to the range of [0, 1] by dividing by 10 000 before
the data were used for the model training. In the online pre-
diction stage, the Landsat images were processed in the same
way as the training stage. Then, before training the model, a

moving window was used to clip the large multispectral im-
ages and masks to pairs of nonoverlapping training samples
with a height and width of 256 × 256 pixels. Finally, more
than 30 000 pairs of image blocks were used for the model
training.

2) Multiscale CNN Model: As shown in Fig. 2, the CNN
model used in the offline training, which is called MSCNN,
is implemented with reference to the multiscale convolutional
feature fusion (MSCFF) model proposed by Li et al. [49].
The MSCFF model was designed for the cloud/cloud shadow
detection of multisource remote sensing images, and its advan-
tages are obvious when compared with the traditional rule-based
methods and the existing deep learning models. Considering that
the deep learning method is universal in image classification, and
that urban water extraction and cloud/cloud shadow detection are
both classification problems, the MSCNN model was designed
for the urban water extraction. The complex encoder–decoder
module of MSCFF was simplified in the MSCNN model, under
the comprehensive consideration of the model accuracy and
computational efficiency. In addition, the MSCFF module was
used in the MSCNN model to further improve the accuracy of
urban water extraction by making full use of the convolutional
features of different scales.
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The MSCNN model is made up of convolution operations at
six different scales. At each scale, the image is processed by three
multifeature convolution operation layers and a single-feature
convolution operation layer, which is used to extract higher level
feature information and reduce the channels of the feature maps.
Except for the final scale, the last multifeature convolutional
layer of each scale is followed by a pooling layer that reduces
the spatial dimensions of the input data while ensuring the
translational invariance of the feature extraction. A max-pooling
operation with 2 × 2 filters and a two-pixel stride is used,
which returns the maximum value for each window. The six
single-feature maps of different scales are sampled to the same
size as the input data, and the upsampling results are aggregated
as the input of the last convolutional layer. This multiscale
feature fusion can provide a broad description of the context
of the given spatial locations [23]. The upsampling operation in
MSCNN is directly implemented by bilinear interpolation. The
output of the last convolutional layer of the network is processed
by the softmax layer to output the class probability map of water
and non-water. The class with the highest probability is then
regarded as the final classification result.

Moreover, in the MSCNN model, each convolutional layer,
except for the last one, is followed by a batch normalization
(BN) layer and a rectified linear unit (ReLU, f(x) = max(0,
x)). The BN layer can speed up the training of the network
and avoid the problem of gradient disappearance. ReLU, as a
nonlinear activation function, can introduce nonlinear factors
into the network and ensure that the parameters can continue to
converge. The convolutional kernel size of each convolutional
layer is 3 × 3, and the output feature maps of each layer are
kept the same size as the input data by adding zeros at the image
borders in the convolution operation. Cross-entropy loss is used
as the loss function in this model, to measure the differences
between the predicted and the expected results, which can be
calculated as follows:

loss = − 1

N

x=N∑

x=i

[yilnF (xi, w) + (1− yi) ln (1− F (xi, w))]

(1)
where xi is the input, yi is the expected output, F (xi, w) is the
actual output, and N is the number of training samples.

In the training process, stochastic gradient descent (SGD) and
back-propagation (BP) are used to update the weight parameters
w until the optimal parameters are obtained by minimizing the
loss function. The initial learning rate of the model is set to 0.1,
and the learning rate follows the polynomial decay from 0.1 to 0
before the maximum number of iterations (200 000) is reached.
Finally, the optimal weight parameters of the model are stored
and then uploaded to GEE for online urban water detection.

B. Online Prediction

The most important step when extracting the extent of urban
water on GEE is to simulate the process of water detection for the
offline MSCNN model with the uploaded trained parameters. As
mentioned above, the training processes in the MSCNN model
are mainly composed of convolutional operations, max pooling,

upsampling operations, and basic arithmetic operations of the
images. These basic operations are implemented one by one in
GEE, and then integrated according to the framework of the
MSCNN model to realize the extraction of urban water using
the CNN model on the cloud platform.

The GEE platform provides many basic encapsulated algo-
rithms while providing users with an online JavaScript API that
allows them to create and run custom algorithms. GEE supports
a variety of complex geospatial analysis operations, including
image classification, change detection, and time-series analysis
[50]. In addition, users can upload charts and raster or vector data
to GEE for processing, and our research makes full use of the
characteristic. The convolutional operations and image algebra
operations of the MSCNN model can be implemented directly on
GEE. The parameters of the convolutional kernels also support
user-definition, so the kernel of each convolutional operation
can be defined with the uploaded parameters of MSCNN. The
process of max-pooling is equivalent to downsampling, and GEE
provides reduction and reprojection operations to change the
image resolution. Similarly, the upsampling process can also
be directly achieved by reprojection and resampling (bilinear
interpolation) on GEE. The results of the urban water extraction
code implemented by simulating MSCNN on GEE are the same
as the offline results, i.e., the maximum probability class map.
Based on the results, the final water extent can be determined.

IV. RESULTS

There were two parts in the verification of the feasibility and
robustness of the OTOP method. The first part was the accuracy
assessment of the method, where the predicted results of OTOP
were compared with the urban water extraction results of other
methods. The second part was to apply the OTOP method to
other major cities in China and evaluate the accuracy. The
specific results are provided in the following sections.

A. Accuracy Assessment

1) Compared Methods: The OTOP method was compared
with two typical methods — the traditional MNDWI method
[9] and the RF method [51] — to prove the effectiveness of the
combination of GEE and MSCNN in urban water extraction. The
threshold of each MNDWI image is automatically determined
by the Otsu method [52]. However, due to the threshold shifting
problem of the Otsu method [53], an additional condition for
determining the final threshold is added through the approximate
statistics of the MNDWI values of water pixels in all experi-
mental data. That is, when the threshold detected by the Otsu
method is less than 0.05, the threshold will be directly set to
0.05, and when it is greater than 0.05, the threshold detected
by the Otsu method will be selected as the final threshold.
Furthermore, the RF algorithm has already been encapsulated
on the GEE platform. The six bands of the Landsat images and
the two texture features of variance and contrast were selected as
feature variables of RF. The addition of texture features obtained
from the gray-level co-occurrence matrix [54] enabled RF to also
utilize the spatial information of the image. The training samples
of RF were the same as for the MSCNN model. The number of
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Fig. 3. Comparison of the urban water extraction results for Changchun. (a) NIR-R-G false-color display of the original Landsat image of the central urban area
of Changchun. (b)–(d) Results of urban water mapping with MNDWI, RF, and OTOP, respectively. Blue color in (b)–(d) shows the accurately detected urban water
bodies, the green shows the missing urban water bodies, and the red shows the false detection. The colors in Figs. 4–7 have the same meanings.

classification trees was determined to be 40 by comparative ex-
periments, because the performance of RF was not substantially
improved when greater than 40. It is worth noting that both
MNDWI and the RF method can be directly implemented on
GEE, in order to compare the difference between OTOP and the
pure online methods in the extraction of urban water.

2) Urban Water Extraction Maps: Urban water extraction
maps of the central urban areas of Changchun, Wuhan, Kun-
ming, and Guangzhou generated by MNDWI, RF, and the OTOP
method are shown in Figs. 3–6. On the whole, all the methods
can accurately extract evident and clear urban water bodies, such
as large rivers, lakes, reservoirs, and ponds. However, compared
with MNDWI and RF, the OTOP method performs better in
the presence of complex urban surfaces. For the urban centers
with dense buildings, in particular, the OTOP method can more

accurately distinguish water from other non-water objects in the
four test cities.

Visually, the traditional MNDWI shows the most serious case
of misclassifying building shadows as water in the urban water
extraction results. There are different degrees of false detection
in the four cities, which is the most obvious in Guangzhou,
where there are dense high-rise buildings (Fig. 7). It is difficult to
distinguish building shadows and low-albedo objects from water
using a threshold because they have similar index values. The
results of RF show some improvement over those of MNDWI.
However, RF also has the same problem of false detection in
urban areas. This indicates that the accuracy of RF is also
inferior to the proposed OTOP method when the same training
samples were used and the spectral and spatial characteristics
of water were also considered. Furthermore, the performance
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Fig. 4. Comparison of the urban water extraction results for Wuhan. (a) NIR-R-G false-color display of the original Landsat image of the central urban area of
Wuhan. (b)–(d) Results of the urban water mapping with MNDWI, RF, and OTOP, respectively.

of RF is unstable in the different cities. For example, the false
detection of RF is more obvious in Guangzhou, but there are
also obvious missing detections in the extraction of urban water
in Kunming, some of which even occur in the center of water
bodies [Fig. 4(c-2)]. This indicates that RF is not robust enough
for water extraction in different areas, and it is more suitable for
urban water extraction at a regional scale. Moreover, MNDWI
and RF also show obvious errors around the lakes within the cen-
tral area of Wuhan. Most of these areas are vegetated farmland
or small water bodies that are mixed with other objects, due to
the spatial resolution of Landsat. MNDWI and RF can identify
these as water, indicating that these two methods are sensitive
to water signals.

Relatively speaking, in the four test cities, the OTOP method
performs well in both false detections and missing detections,
both of which are within acceptable limits. This is because
the MSCNN model trained offline can use the spectral and
spatial information of the image to learn the characteristics of
water bodies at multiple scales and levels, so as to determine
the extent of urban water more accurately. In addition, since
there are fewer water areas in Changchun, the extraction results
of the RF and OTOP are visually similar. However, a closer
observation shows that there are still a few false detections in the
results of RF in the urban centers. Compared with RF, the OTOP

method improves the accuracy of water extraction in the building
areas.

3) Urban Water Extraction Accuracy: The confusion matrix
was obtained by comparing the predicted results and the refer-
ence masks, pixel by pixel. Five indicators were calculated based
on the confusion matrix to quantitatively evaluate the accuracy
of the urban water extraction: omission error (OE), commission
error (CE), kappa coefficient (kappa), F1-score, and intersection
over union [IoU, (2)]. Note that kappa, F1-score, and IoU are
comprehensive indicators of the overall performance of a certain
method, where a larger value means a higher accuracy, whereas
the smaller the OE and CE values, the better the accuracy.

IoU =
Intersection areas of predicted and reference water

Union areas of predicted and reference water
.

(2)
The accuracies of MNDWI, RF, and the OTOP method for

extracting urban water in the four test cities are summarized
in Table II. The statistical results show that, among the three
methods, the OTOP method achieves a higher accuracy in water
extraction at all the test cities. The mean kappa, mean F1-score,
and mean IoU of urban water extraction with the OTOP method
in the four cities reaches 0.924, 0.930, and 0.869, respectively,
which are the highest among the methods. Consistent with the
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Fig. 5. Comparison of the urban water extraction results for Kunming. (a) NIR-R-G false-color display of the original Landsat image of the central urban area
of Kunming. (b)–(d) Results of the urban water mapping with MNDWI, RF, and OTOP, respectively.

results of the visual inspection, MNDWI shows overestimation
in the four test cities, i.e., the false detection is serious. The OEs
of MNDWI in Guangzhou and Wuhan are about 1%, but the
CEs are high, so the three comprehensive indicators are lower.
In Kunming, where the area with dense buildings is relatively
small, the false detection of MNDWI is slightly better, the CE
is 11.06%, and the OE is 3.60%. The three comprehensive

indicators are also relatively high. Compared with MNDWI, the
accuracy of RF shows a certain degree of improvement. Except
for Kunming, the overall accuracy of urban water extraction
with RF in the other three cities is improved, the CE of each
city is decreased, but the OE is inevitably increased. The OE of
Changchun, which is 14.03%, increases the most. However, the
CEs of RF are higher in Guangzhou and Wuhan with complex
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Fig. 6. Comparison of the urban water extraction results for Guangzhou. (a) NIR-R-G false-color display of the original Landsat image of the central urban area
of Guangzhou. (b)–(d) Results of the urban water mapping with MNDWI, RF, and OTOP, respectively.

TABLE II
ACCURACY ASSESSMENT RESULTS FOR THE URBAN WATER EXTRACTION AT THE FOUR TEST CITIES BY MNDWI, RF, AND OTOP

The bold entities indicate the best result in the accuracy assessment.

urban surfaces, at 11.31% and 13.73%, respectively. On the
whole, the quantitative evaluation results for RF also show
that although the overall accuracy of urban water extraction is
improved, the extraction results in the different cities are quite
different. The result of water extraction by RF in Kunming is not
even as good as that of MNDWI. Therefore, the RF method is not

stable enough for automated large-scale and long-term studies.
Compared with these methods, the OTOP method performs
better at all the test cities. In addition to the obvious increase
of the three comprehensive indicators, the OEs and the CEs of
the four cities are also lower values, mostly below 10%. The only
larger error is the OE for Changchun, which is 14.38%. However,
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Fig. 7. Details of the water extraction in the dense building area of Guangzhou. (a) NIR-R-G false-color display of the original Landsat image. (b)–(d) Results
of urban water mapping with MNDWI, RF, and OTOP, respectively.

compared with RF, it can be seen that the OTOP method reduces
the CE while reducing the OE as far as possible, because the CE
and the OE were mutually constrained. The results for the other
cities also show that the OTOP method can achieve a better
relative balance between the two indicators of CE and OE. That
is to say, the OTOP method not only reduces the problem of CEs
in urban areas, but also guarantees as much as possible that there
are not many OEs so as to achieve a satisfactory classification
accuracy.

Furthermore, from the perspective of overall performance, the
OTOP method shows the least difference, compared with the
other two methods, in images covering the different test cities
and from different sensors. The IoUs of the OTOP method are
stable at higher values, and the kappa and F1-score are both
above 0.9. This also shows that the OTOP method has strong
robustness, and that it can accurately distinguish between water
and non-water in urban areas.

B. Extended Validation in Major Cities of China

To further demonstrate the universality of the OTOP method,
we applied the OTOP method to 32 other major cities in China,

and evaluated the accuracy. According to the spatial distribution
and development level of each city, the 32 cities were divided into
eight groups, without repetition, with four cities in each group.
There were nine groups in total, including the previous four cities
used for the validation. The Landsat images and water masks of
any eight groups were used as training data to extract the urban
water in the central urban areas of the remaining four cities.
The above operation was repeated eight times, to complete the
extended validation of the OTOP method in China. The same five
indicators were again used to quantitatively assess the accuracy
of the urban water extraction in each city (Fig. 8).

The results of the extended validation show that the OTOP
method performs well throughout China, with strong universal-
ity. The kappa, F1-score, and IoU for most cities are above 0.9,
0.9, and 0.82, respectively. The OE and CE of the urban water
extraction in each city also reach a satisfactory relative balance
under the premise of mutual checks and balances. The OEs and
CEs of most cities are below 13% and 10%, respectively. In the
developed cities in Eastern China, such as Beijing, Shanghai,
Guangzhou, and other cities with dense high-rise buildings,
the OTOP method can accurately distinguish urban water and
building shadows, achieving a high water extraction accuracy.
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Fig. 8. The extended validation results of urban water extraction with the OTOP method in the major cities of China.

The OTOP method also shows a good performance in urban
water extraction in some coastal cities such as Dalian, Qingdao,
Fuzhou, Xiamen, Haikou, and Taipei. In some inland cities with
relatively developed water systems, such as Nanchang, Wuhan,
Changsha, and Chongqing, the kappa values of the OTOP
method are 0.949, 0.910, 0.941, and 0.980, respectively, and the
IoUs are 0.910, 0.872, 0.892, and 0.962, respectively, which are
all very high values. The OEs and CEs of the OTOP method are
also extremely small values. However, in some cities in Western
China, such as Lhasa, Xining, and Hohhot, the comprehensive
accuracies of the water extraction are relatively lower, and the
OEs are higher. There are fewer water bodies and mainly narrow
rivers in these cities, such as the Lhasa River in Lhasa, the
Huangshui River in Xining, and the East River in Hohhot, so
that there are more mixed pixels in the water areas. The water
features of these mixed pixels are not obvious enough to be easily
detected, but they are labeled as water according to the expert
experience when manually drawing the water masks. In addition
to the influence of mixed pixels, too little water can also easily
magnify the error indicators in the accuracy assessment.

Furthermore, it can also be found that the OTOP method re-
sults in few false detections (low CEs) for urban water extraction
in all the cities. This again proves that the OTOP method can

effectively distinguish water from building shadows and dark
ground surfaces in different urban areas, and it can accurately
determine the extent of urban water. The performance of the
nine models is also verified by the high accuracy of urban water
extraction results for the test data.

V. DISCUSSIONS

A. Advantages of the Method Combining GEE and MSCNN

In this article, we have proposed the OTOP method for urban
water extraction. The OTOP method can not only improve the
accuracy of urban water extraction in various environmental
backgrounds, but also provide a flexible way to accelerate the
efficiency of water extraction, so as to facilitate the related
research into long-term and large-scale urban water monitoring.

GEE provides a powerful data storage and data processing
platform, which has free access to Landsat data across the entire
time series, and it also has the ability to quickly batch-process
large numbers of images, regardless of time and space. There-
fore, compared with the other methods of urban water extraction,
for which it is necessary to download data for subsequent local
processing, the OTOP method can save a lot of time when down-
loading data and space when storing data. The data processing



WANG et al.: URBAN WATER EXTRACTION METHOD COMBINING DEEP LEARNING AND GOOGLE EARTH ENGINE 779

Fig. 9. Part of the water extraction result by the OTOP method for the cloudy
Landsat image with path/row 123/039 on September 12, 2017. (a) NIR-R-G
false-color display of the original image. (b) Blue color indicates the extracted
extent of the water.

can also be performed in parallel on GEE, which represents a
qualitative leap in processing efficiency.

The classification accuracy of the OTOP method also shows
an improvement compared with the traditional water extraction
methods already encapsulated on GEE, and there is no need
for additional data or separate detection procedures to remove
the noise from shadows and dark surfaces. Our experimental
data were selected from the Landsat images of 36 cities in
different regions of China, which were deliberately chosen to
cover different urban water types and urban surface features. If
there are some clouds/cloud shadows in the image, the OTOP
method can also accurately distinguish water (Fig. 9). Therefore,
the OTOP method can achieve a higher precision than the
existing traditional water extraction methods on GEE, and it
has strong robustness for different types of water extraction in
different urban environments. MNDWI and RF may achieve
a higher accuracy by adjusting the thresholds or changing the
combinations of feature variables. But this will have strong
subjective consciousness and require expert experience, as well
as a lot of time, and it is not easily extended to large-scale
automated application.

Compared with the latest deep learning function implemented
on GEE with the TensorFlow framework, the OTOP method
has unique advantages. The realization of the existing deep
learning function on GEE provides a very convenient approach
for scientific research, but it is reliant on the three intermediate
platforms of Google Cloud Storage, Google Colaboratory, and
AI Platform. When the usage of Google Storage exceeds the
specific limits, or when using the Google AI platform to train
models and obtain predictions in the cloud, the cost is the factor
that must be considered for some studies. As for the proposed
OTOP method, the training of the network is done offline, and
the powerful computing performance of GEE is sufficient for
the part that needs to be processed online, so that the whole
process is free. In addition, the OTOP method is not limited
by the TensorFlow framework for the programming language
and the building style of the network model, so that it is more
flexible and free to build the preferred deep learning model.
The previously trained deep learning models can also be applied
directly on GEE, without being reimplemented in TensorFlow.

In summary, the combination of GEE and MSCNN does
not require us to make many subjective decisions affecting the
accuracy of the classification, and it also maintains the advantage
of the high accuracy of urban water extraction with MSCNN.
There is no need to take into account the download of mas-
sive data or the requirement for high-performance computing
equipment. We have also provided a more flexible way to utilize
deep learning models on GEE. The proposed OTOP method
can be used to study the characteristics of urban water changes
under the context of urbanization in China. It is also possible to
apply the idea of the OTOP method to other studies of land-use
classification.

B. Further Improvements

Although the OTOP method achieved satisfactory results in
this study, there are still several problems. First, due to the limited
spatial resolution of Landsat images, most of the edge pixels
of water cover a relatively large area which may be composed
of water and non-water objects [55]. The OTOP method tends
to classify the mixed pixels at the edges of larger water areas
as water during the urban water extraction, which is one of
the major reasons for the slight misdetection of water pixels
in the predicted results (Figs. 4 and 6). This problem could be
solved by adding more accurate samples of edge pixels to the
training data. In addition, because of the characteristic of the
convolution operations, the OTOP method is slightly inferior to
the pixel-based water extraction method in terms of the fineness
of the water detection. Finally, the training data we selected for
the offline training of the MSCNN model were the artificially
drawn water masks of Landsat images of China, so the model
parameters may be more suitable for the mapping of urban water
in Chinese cities. But there are more urban areas with other
urban surface characteristics in the world. If we wanted to make
the OTOP method applicable globally, it would be necessary to
include more training data from different urban areas, to make
the use of OTOP more accurate and convincing.

VI. CONCLUSION

Urban water mapping is very important for urban manage-
ment and planning. In this article, we have proposed a new
method combining GEE with a CNN for urban water extraction,
which is called the OTOP method, to facilitate the study of
long-term and large-scale urban water change detection. The
method involves training a complete MSCNN model offline, and
then extracting water in the urban areas on GEE using the trained
model parameters. Such a combination can not only give full
play to the advantages of GEE, which is specifically designed
to manage big data, but also provide a more flexible way to
use deep learning models on GEE to improve the accuracy of
water extraction. In addition, the OTOP method only requires
the six bands of Landsat images as input to separate water
and non-water, and the multiscale feature fusion module in
MSCNN can help to keep more information while considering
the context during pixel-by-pixel classification. There is no need
to manually select thresholds or apply other artificially defined
rules in different regions and conditions, or to rely on rich
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prior knowledge. The results of the comparative experiments
with the traditional MNDWI and RF methods on GEE for
Changchun, Wuhan, Kunming, and Guangzhou showed that the
OTOP method performs better than the other methods. It can
effectively suppress the noise from building shadows and other
dark surfaces in urban areas while ensuring accurate detection of
urban water. In the extended validation for 32 other major cities
in China, the high accuracy of urban water extraction with the
OTOP method suggests that it also has strong universality, and is
suitable for water extraction at different times in different urban
areas. Therefore, the OTOP method can meet the requirements
for accuracy, automation, and wide application.

APPENDIX

The code of the online prediction part of OTOP and the list
of Landsat data used in the experiment can be viewed at http:
//sendimage.whu.edu.cn/en/resources/, which also includes the
model parameters of the offline MSCNN.
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