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Abstract—Cloud contamination greatly limits the potential uti-
lization of optical remote sensing images for geoscience applica-
tions. Many solutions have been developed to remove the clouds
from multispectral images. Among these approaches, the temporal-
based methods which borrow complementary information from
multitemporal images outperform the other methods. However, the
common fundamental supposition of the temporal-based methods
decides that they are only suitable for scenes with phenological
changes, while they perform poorly in cases with significant land
cover changes. In this paper, a cloud removal procedure based on
multisource data fusion is developed to overcome this limitation.
On the basis of the temporal-based approaches, which employ
a cloud-free image as reference, this method further introduces
two auxiliary images with similar wavelengths and close acquisi-
tion dates to the reference and target (contaminated) images into
the reconstruction process. The temporal variability of the land
cover is captured from the two auxiliary images through a modi-
fied spatiotemporal data fusion model, and thus, the serious errors
produced by the temporal-based methods can be avoided. More-
over, a residual correction strategy based on the Poisson equation
is used to enhance the spectral coherence between the recovered
and remaining regions. The experiments confirmed that the pro-
posed method can perform very well for cases with significant land
cover changes. Compared with some state-of-the-art approaches,
it produces lower bias and more robust efficacy. In conclusion, our
method will act as an important technical supplement to the cur-
rent cloud removal framework, and it provides the possibility to
handle scenes with significant land cover changes.

Index Terms—Cloud removal, land cover changes, optical
remote sensing images, residual correction, spatiotemporal data
fusion.
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I. INTRODUCTION

A LARGE volume of remotely sensed observations is now
acquired every year, and geoscience applications based

on these data facilitate the monitoring of the land surface en-
vironment and the understanding of Earth dynamics [1]–[2].
However, a huge gap still exists between the data we acquire
and the data we require [3]. A very serious obstacle to the fur-
ther utilization of optical remote sensing images is the cloud and
cloud shadow contamination issue (referred to as cloud contam-
ination, hereafter). The passive radiant energy of cloud-covered
ground features cannot pass through clouds and be captured by
satellite-borne sensors during the acquisition process, resulting
in missing information in optical images. It has been reported
that Landsat ETM+ images are 35% cloud-contaminated glob-
ally [4], and the problem is even worse in humid tropical areas.
Therefore, cloud removal is a vital topic for the subsequent
applications.

Much effort has been devoted to addressing this issue. Es-
sentially speaking, cloud removal is a process of missing
information reconstruction. According to the complementary
information source, the existing reconstruction methods can be
classified into four categories: spatial-based methods, spectral-
based methods, temporal-based methods, and multisource-
based methods [5]. A brief review of cloud removal is presented
below. It is noteworthy that gap filling is identical to cloud re-
moval, in essence, and thus, some approaches for gap filling are
also included in the following discussion.

Spatial-based methods exploit the cloud-free regions of a
target image to provide complementary information. Spatial in-
terpolation approaches were one of the first type of methods
to be applied to estimate missing pixels [6]–[7]; however, they
only work for small gaps. Subsequently, some advanced math-
ematical techniques have been employed to better solve the
issue [8]–[11]. Technically, these methods propagate the geo-
metric structures of ground features from cloud-free regions to
cloud-covered regions; thus, realizing the goal of reconstruc-
tion. Generally speaking, the spatial-based methods are capable
of yielding plausible cloud-free visualization for small gaps
[12]–[13]; however, they perform poorly for large-area contam-
ination, and thus, they are unsuitable for quantitative analy-
sis and further applications. The spectral-based methods make
full use of the correlation between the contaminated bands and
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auxiliary clear bands for the reconstruction. For example, a
haze-optimized transformation method was proposed by Zhang
et al. [14] to radiometrically correct the visible bands of Landsat
images contaminated by thin cloud and haze. A similar strat-
egy can be found in some of the research into the recovery of
missing data of Aqua MODIS band 6 [15]–[17]. However, thick
clouds usually have serious contamination in all bands, and no
complete clear bands can be employed as complementary infor-
mation. As a result, the spectral-based methods only work for
thin clouds, and they cannot deal with thick clouds.

Remote sensing systems with a regular revisit cycle can pro-
vide us with multitemporal images for a given location. The
temporal correlation between multitemporal images is fully uti-
lized for reconstruction by the temporal-based methods. For
time-series data with a dense acquisition frequency, temporal
filter methods can effectively reconstruct the missing regions
resulting from cloud contamination. These methods are based
on the fact that the dense time series tends to display regu-
lar fluctuations if the data are ordered in a chronological way.
Related work can be found in the studies of Beck et al. [18],
Malambo and Heatwole [19], and Yang et al. [20]. Nevertheless,
the temporal filter methods are only applicable to dense time-
series data, which often come with a coarse spatial resolution.
By contrast, temporal replacement methods have been proposed
to be used specifically with high and medium spatial resolution
images having a sparse temporal frequency. For this category,
a cloud-free multitemporal image is adopted as a reference to
recover the contaminated pixels in the target image. An ideal
situation is to directly replace the missing pixels with observed
pixels from the same region in the reference image [21]. Unfor-
tunately, the radiometric differences in multitemporal images
often result in spectral incoherence between the recovered and
remaining regions in the synthetic results. To minimize the dif-
ferences, some studies have further adjusted the brightness of
the observed pixels in the reference image in accordance with
that in cloud-free regions in the target image, using strategies
such as local linear histogram matching (LLHM) [22], the modi-
fied neighborhood similar pixel interpolator (MNSPI) [23], and
weighted linear regression (WLR) [24]. Besides the temporal
replacement methods, another effective way to replace a miss-
ing pixel is to directly utilize same-class pixels in the cloud-free
regions of the target image itself, with the reference image serv-
ing as a guidance to locate similar pixels. Related cases can
be found in Meng et al. [25], Jin et al. [26], and Cheng et al.
[3]. Recently, some advanced techniques have also been used in
this category, such as sparse representation [27]–[30] and deep
learning [31]–[32], and they are expected to generate accurate
recovered results. In general, compared with other categories,
the temporal-based methods are less influenced by the spatial
size and landscape heterogeneity of the missing areas, and they
can produce synthetic cloud-free results with a higher fidelity.
However, the temporal-based methods assume that the spatial
coverage of the land cover is fixed during the acquisition inter-
val. Limited by this common assumption, the temporal-based
methods are appropriate for scenes with phenological changes,
but they cannot handle cases with significant land cover changes
(especially those with unfixed object boundaries).

The multisource-based methods may provide us with a pos-
sible way to solve this problem via the introduction of obser-
vations from other data sources. Unfortunately, there appears
to have been no satisfactory solutions for this problem until
now. To recover the contaminated regions in a target image,
some studies have employed optical images acquired from dif-
ferent remote sensing systems [33]–[34]. For this approach to
work, the auxiliary images must have a similar wavelength and
spatial resolution to the target image. Essentially, the reconstruc-
tion methods in this case are identical to the above-mentioned
temporal-based methods, and thus, they cannot generate satis-
factory results when major land cover changes occur. Moreover,
synthetic aperture radar (SAR) images, which are free from
cloud disturbance, have been introduced as auxiliary data by
Eckardt et al. [35], Huang et al. [33], and Li et al. [37]. How-
ever, SAR images commonly suffer from severe speckle noise,
and using them as an auxiliary is likely to decrease the recon-
struction accuracy. Another interesting study was done by Roy
et al. [38], which used multitemporal Landsat-MODIS fusion
for gap filling. Although, to the best of our knowledge, they were
the first to present the idea that spatiotemporal data fusion has
the potential to reconstruct the missing areas in optical images,
their work [38] only aimed to develop a new spatiotemporal data
fusion model for the production of land surface reflectance with
both high spatial and temporal resolutions. It did not adequately
transfer the spatiotemporal data fusion model into the cloud re-
moval objective. Thus, they did not provide any experiment for
cloud removal.

In this paper, based on the idea of multisource data fusion,
we propose a new cloud removal method that fully integrates
the multisource data into the cloud removal objective. In the
proposed method, a modified spatiotemporal data fusion model
is introduced to effectively integrate multisensor observation
data and generate initial recovered results with high spatial con-
sistency. Furthermore, a residual correction strategy based on
the Poisson equation follows to unite the information from the
target image to enhance the spectral coherence between the re-
covered and remaining regions. In short, the proposed cloud
removal method effectively combines the spatiotemporal data
fusion model with the residual correction process to produce re-
covered results with high spatial and spectral consistency. The
proposed method is then applied to scenes with significant land
cover changes, for which the widely used temporal-based meth-
ods show poor recovery ability. The experiments undertaken in
this study confirmed the efficacy of the proposed method and
revealed that it can acquire plausible visual performance and sat-
isfactory quantitative accuracy for scenes with significant land
cover changes.

II. METHOD

A. Fundamental Framework

Suppose we have a cloud-contaminated image (denoted as
the target image Pt) acquired on the target date t, then the data
source of the given image is termed the primary source. To better
handle significant land cover changes, an additional data source,
defined as the auxiliary source, is introduced in the proposed
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Fig. 1. Flowchart of the proposed cloud removal method.

framework. The auxiliary source is required to have similar
wavelengths to that of the primary source and have a relatively
high temporal frequency to match the acquisition dates. Due
to the tradeoff between the spatial and temporal resolutions,
the auxiliary images are usually of a medium or low spatial
resolution. More specifically, to recover the target image Pt ,
we need to select a cloud-free multitemporal image (denoted
as the reference image Pr ) acquired on the reference date r.
Moreover, two cloud-free coarse-resolution images (denoted as
auxiliary images At and Ar ) from the auxiliary source need to be
provided. Note that the acquisition dates of the auxiliary images
are supposed to be the same as or adjacent to the target date t
and reference date r, respectively, which is why the auxiliary
source should have a relatively high temporal resolution. Before
the implementation of the proposed method, two preprocessing
steps are required: upsampling of the two auxiliary images to
the same spatial resolution as the target image; and acquisition
of a cloud mask of the target image to locate the pixels which
need to be reconstructed.

Generally speaking, the basic framework of the proposed
method consists of two stages. In the first stage, the reference
image Pr and the auxiliary images At and Ar are jointly fused
to fill the contaminated regions in the target image Pt , and thus,
a preliminary cloud-free result is generated. A recently devel-
oped fusion method, termed the spatial and temporal nonlocal
filter-based data fusion model (STNLFFM), is modified to better
handle this case [40]. In the second stage, given that the prelim-
inary recovered regions may display slight spectral incoherence
with the remaining regions due to the slight radiometric differ-
ences between multiple sensors, a residual correction strategy
is used to enhance the spectral consistency. Fig. 1 displays the
overall flowchart of the proposed method.

B. Spatiotemporal Data Fusion

Spatiotemporal data fusion aims to counteract the tradeoff
between the spatial and temporal resolutions of different sensors,
and it was originally developed to generate a Landsat reflectance
time series at a daily frequency by blending Landsat and MODIS

observations [39]. Recently, Cheng et al. [40] came up with
STNLFFM, and the model proved to be superior to some of the
classical data fusion algorithms. In this paper, a modified version
of STNLFFM is provided to better solve the problem. To be
more specific, two improvements are made. First, two fine and
coarse spatial resolution image pairs are required for the original
STNLFFM as input, which is inappropriate for our situation. In
the modified version, the whole weight is removed to support
the fusion with only one image pair. Second, the individual
weight was previously calculated based on patches, while, in
our version, a pixel-scale estimation strategy is considered to
increase the computational efficiency.

For a given pixel location, the STNLFFM method employs
a linear model to describe the temporal variability between the
target image Pt and the reference image Pr . The temporal rela-
tionship is then assumed to be scale-invariant, so we can obtain
the linear model with the aid of the two auxiliary images At and
Ar . Furthermore, the STNLFFM method makes full use of the
similar pixels to increase the robustness of the prediction. On
this basis, the reflectance of a missing pixel can be recovered
with the following equation:

P̂t(x, y,B) =
N∑

i=1

W (xi, yi , B) × [a(xi, yi , B)

× Pr (xi, yi , B) + b(xi, yi , B)] (1)

where P̂t(x, y,B) denotes the estimated reflectance of a miss-
ing pixel located in (x,y) in band B, and it is the unknown that is
to be calculated. Pr (xi, yi , B) denotes the observed reflectance
of the ith similar pixel in band B for the reference image Pr . N is
the total number of similar pixels. a(xi, yi , B) and b(xi, yi , B)
are the conversion coefficients which describe the temporal vari-
ability, and they can be derived from the two auxiliary images
based on the above assumptions. W (xi, yi , B) is the weight of
the ith similar pixel, and it determines how much the ith similar
pixel contributes to the estimation of the missing pixel.

1) Identifying Similar Pixels: Selecting similar pixels is the
prerequisite for the calculation of conversion coefficients and
pixel weights, and the quality of the similar pixels directly af-
fects the accuracy of the subsequent steps. To guarantee the
effectiveness of the search procedure, we take advantage of the
reference image and the auxiliary images to locate similar pix-
els. For a given missing pixel, a local moving window (with a
size w) centered in its location is first applied to select potential
candidates in the close neighborhood, and then two conditions
are set according to the spectral similarity and temporal consis-
tency as follows:

∣∣Pr (x, y,B) − Pr (xi, yi , B)
∣∣ < d × 2Pr (x,y ,B ) (2)

∣∣∣∣At(x, y,B) − Ar (x, y,B)
∣∣ − ∣∣At(xi, yi , B)

− Ar (xi, yi , B)
∣∣∣∣ < σ (3)

where d is a free parameter that determines the threshold in
the first condition in (2). It may slightly vary for different data
sources, and it is set as 0.01 for the Landsat TM case, as sug-
gested in [40]. σ is the uncertainty of the temporal difference
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between two coarse-resolution auxiliary images. It is primarily
caused by the difference in observation conditions. In this paper,
it is set as 0.005 for MODIS, as in the study of Gao et al. [39].
A pixel is picked if it meets the above two conditions. It is note-
worthy that the temporal consistency condition further removes
those pixels which exhibit different temporal variability from
the missing pixel, and it plays an important role in scenes with
significant land cover changes.

It should be noted that the window size w has a direct impact
on the fusion performance. If the size is set too small, we cannot
identify enough similar pixels for estimating the conversion
coefficients in the next step. If it is too large, the computational
burden will be increased significantly. After carrying out a trial-
and-error test, we decided to set the window size to be 41 in our
experiment to balance the fusion accuracy and the computational
efficiency.

2) Calculating Conversion Coefficients: Based on the sup-
position that the linear model is scale-invariant, the auxiliary
images can be explored to derive the conversion coefficients.
Since similar pixels exhibit temporal variability that is con-
sistent with the missing pixel, it is reasonable to assume that
they share the same conversion coefficient set. Here, a restricted
least-squares model is applied to the similar pixels in auxiliary
images At and Ar to obtain a and b.

3) Calculating Pixel Weights: Although the selected pixels
will share evident similarity with the missing pixel, slight dif-
ferences still exist. A pixel with less difference provides more
credible information and, thereby, it should contribute more to
the final estimate. In the modified version of STNLFFM, the
whole weight is removed to support the fusion with only one
coarse-and-fine image pair. Meanwhile, a pixel-based individ-
ual weight is used to increase the computational efficiency, with
the original form of the nonlocal means filter model preserved.
The weight in this paper is calculated as

S(xi, yi , B) = exp
(
−|Ar (xi, yi , B) − At(x, y,B)|

h2

)
(4)

W (xi, yi , B) =
S(xi, yi , B)

∑N
i=1 S(xi, yi , B)

(5)

where S(xi, yi , B) is the spectral similarity of the ith similar
pixel. In STNLFFM, the calculation of S(xi, yi , B) takes the
basic form of a nonlocal filter [40], h is a parameter related to
the noise level of the auxiliary images. Based on our pretesting,
we find it has little influence on the fusion results, so h is set to
0.15 in our experiment, as in [40]. After normalization with (5),
the numerical range of the ith similar pixel weight is [0, 1], and
the sum of all the similar pixel weights equals 1.

4) Estimating Missing Pixels: After the calculation of con-
version coefficients and pixel weights, the estimate of the
missing pixel can be generated through (1), and, thus, all the
contaminated patches can be preliminarily recovered. Addition-
ally, it should be noted that pixels along the boundaries outside
the contaminated patches also need to be estimated, because they
are a necessary input for the residual correction in the second
stage.

C. Residual Correction

Although we assume that the introduced auxiliary source
is spectrally comparable with the primary source, it is likely
that there will still be some radiometric differences between
multiple sensors. As a result, the recovered patches generated
from the spatiotemporal data fusion may display slight spectral
inconsistency with the cloud-free regions in target image Pt ,
especially in the edge areas. Therefore, a residual correction
step is required to minimize the incoherence.

To this end, a patch-based adjustment strategy is embed-
ded in the proposed method. This strategy was originally de-
veloped for seamless image cloning by Pérez et al. [41]. It
mathematically formulates the problem as Poisson equation
and solves it using a global optimization process. For the
target image Pt , we denote the spatial coverage of a cloud-
contaminated patch as Ω (the boundary of the patch is �Ω),
while the cloud-free coverage around the contaminated patch
is termed Ω∗. The cloud-free image after residual correction
can be viewed as an intensity function, which consists of two
parts. The first part is an unknown function f defined over Ω,
with f = {Pt(x, y,B)|(x, y) ∈ Ω}, which is what we want to
obtain. The second part is a known function f∗ defined over
Ω∗, with f ∗ = {Pt(x, y,B)|(x, y) ∈ Ω∗}. The preliminary re-
covered patch in the first stage is defined as the function g over
Ω, with g = {P̂t(x, y,B)|(x, y) ∈ Ω}. Specifically, the gradient
of the preliminary recovered patch g is employed as a guidance
vector field to guide the optimization. A boundary condition is
used to solve the optimization equation, and the adjusted patch
f can be obtained as follows:

minf

∫ ∫

Ω
|∇f −∇g|2 , with f |∂Ω = f∗ |∂Ω (6)

where ∇ = ( ∂
∂x , ∂

∂y ) is the gradient operator. The adjusted re-
covered patch ρ derived from (6) satisfies two conditions: the
first is that the gradient of the adjusted patch f is as close to that
of the preliminary recovered patch g as possible, and the second
is that the transition from the adjusted patch f to the cloud-free
regions in the target image Pt is smooth. To solve (6), a helpful
alternative way using Poisson equation is provided. We further
define a residual function f ′ over Ω, such that f = g + f ′. Since
the pixels along the boundary �Ω are also estimated in the first
stage, the mismatch (f ∗ − g) over �Ω can be obtained, with
f ∗ − g = {Pt(x, y,B) − P̂t(x, y,B)|(x, y) ∈ ∂Ω}. The resid-
ual function f ′ can then be viewed as a membrane interpolation
of the mismatch (f ∗ − g) along the boundary �Ω. Thus, the
residual function f ′ can be solved by the following Poisson
equation with a boundary condition:

Δf ′ = 0 over Ω with f ′ |∂Ω = (f ∗ − g) |∂Ω (7)

where Δ = ( ∂ 2

∂x2 , ∂ 2

∂y 2 ) is the Laplacian operator. The residual
function f ′ can be interpolated with (7), and the adjusted patch
(i.e., the unknown function f) can be produced by adding the
residual back to the preliminary recovered patch g. A brief
implementation procedure for the residual correction strategy is
presented below.
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Fig. 2. Two datasets used for the algorithm testing (with the red, green, and blue bands as RGB). The first row displays the data of site 1. (a)–(b) Landsat
images of December 28, 2004, and February 14, 2005, respectively. (c) Cloud-contaminated image simulated from (b). (d)–(e) Resampled MODIS images for
December 28, 2004, and February 14, 2005, respectively. The second row displays the data of site 2. (f)–(g) Landsat images of August 22, 2004, and April 3, 2005,
respectively. (h) Cloud-contaminated image simulated from (g). (i)–(j) Resampled MODIS images for August 22, 2004, and April 3, 2005, respectively.

1) Extracting Residuals Along the Patch Boundary: As men-
tioned above, a mask identifying the location of clouds is re-
quired beforehand. With the aid of the Laplacian convolution
kernel, external boundaries �Ω of the cloud patches can be ac-
curately extracted from the mask. Since we also estimate the
pixels along the boundary through the spatiotemporal data fu-
sion in the first stage, the residuals (f ∗ − g) along the boundary
can be obtained between the estimated pixels and the original
observed pixels in the target image Pt .

2) Solving Poisson Equation: A Laplacian coefficient matrix
should be first derived. With the residuals (f ∗ − g) along the
boundary �Ω, we can successfully build Poisson equation [i.e.,
(7)]. The residual function f ′ defined over the contaminated
region Ω can be calculated by solving the equation, and we
can thus obtain the residual of each pixel in the preliminary
recovered patch.

3) Combining Residuals With the Preliminary Estimated Pix-
els: The residual of each pixel is added back to the preliminary
recovered pixel in the first stage, and then the adjusted pixel af-
ter residual correction is estimated. All the contaminated pixels
in the target image Pt are replaced by the adjusted pixels, and
thus, the final cloud-free image is produced.

III. EXPERIMENTS AND RESULTS

Landsat 5 images (bands 1–5, and 7) were selected to conduct
the experiments, and MODIS images (bands 3, 4, 1, 2, 6, and 7),
which show good spectral compatibility with Landsat images,
were used as the auxiliary source. A time-series dataset, which
has been extensively used in data fusion research [42]–[43], was
employed in the experiments. This dataset contains 14 available
Landsat-MODIS image pairs of the Lower Gwydir Catchment
in Australia, observed from April 2004 to April 2005. All the

Landsat images were acquired by the TM sensor, and they were
atmospherically corrected using the algorithm proposed by Li
et al. [44]. MODIS Terra MOD09GA Collection six daily re-
flectance products were used and geographically rectified with
the Landsat data. Given that the Landsat images in the dataset
were resampled to 25 m, it was necessary that we resample the
MODIS images to the same spatial resolution using the cubic
convolution method. All the test data used were typical subsets
cropped from the time-series dataset.

To assess the reconstruction performance of the proposed
method, benchmarking was introduced. The following four
temporal-based methods were employed to enable a com-
parative analysis: LLHM [22], MNSPI [23], WLR [24], and
patch matching-based multitemporal group sparse representa-
tion (PM-MTGSR) [30]. Also, given that spatiotemporal data
fusion can be considered an effective strategy for reconstruction,
we also compared our work with STARFM proposed by Gao et
al. [39]. We first got a fused result from STARFM, using the
reference and auxiliary images as input, and then replaced the
contaminated regions in the target image with the fused result.

A. Experiments With Simulated Cloud Contamination

Since we mainly target special scenes dominated by signif-
icant land cover changes, two typical sites were selected. As
displayed in Fig. 2, two 500 × 500 subsets covering a same
overall area of 156.25 km2 were cropped to conduct the simu-
lated tests. Each group dataset comprised four observed images,
with two from the Landsat source and two from the MODIS
source. For the first site, images acquired on December 28,
2004 (as the reference date), and February 14, 2005 (as the tar-
get date), were selected. Fig. 2(a) and (b) shows that obvious
land cover changes exist in the region marked with yellow. A
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Fig. 3. Recovered results for site 1 (with the red, green, and blue bands as RGB). (a) Original cloud-free Landsat image of February 14, 2005. (b)–(g) Images
recovered by LLHM, MNSPI, WLR, PM-MTGSR, STARFM, and the proposed method, respectively. (h)–(n) Zoomed-in views of the subset region marked in
yellow in (a).

cloud-contaminated region, accounting for approximately 35%
of the whole image, was simulated in the central part of the
original clear image, as shown in Fig. 2(c). For the second site,
images acquired on August 22, 2004 (as the reference date), and
April 3, 2005 (as the target date), were used. Significant land
cover changes can be found in the marked region [see Fig. 2(f)
and (g)]. Fig. 2(h) shows a simulated obscured image with the
same manual cloud mask as Fig. 2(c). It is noteworthy that the
landscape of the second site is more fragmented, and it expe-
rienced more significant changes due to its longer acquisition
interval between multitemporal images.

The recovered images generated by the six methods were
compared with the original clear images, from both visual
and quantitative fidelity aspects. Two widely used indices—the
root-mean-square error (RMSE) and the correlation coefficient
(CC)—were adopted to allow the quantitative assessment. A
lower RMSE and a higher CC indicate better consistency of
recovered result with the target image.

For the first site, the original cloud-free image and six re-
covered images are displayed in Fig. 3, together with a detailed
view of a subset region. Judging from all the recovered images,
we can see that the LLHM method [see Fig. 3(b)] produces seri-
ous directional artifacts and obvious spectral discrepancy in the
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Fig. 4. Recovered results for site 2 (with the red, green, and blue bands as RGB). (a) Original cloud-free Landsat image of April 3, 2005. (b)–(g) Images
recovered by LLHM, MNSPI, WLR, PM-MTGSR, STARFM, and the proposed method, respectively. (h)–(n) Zoomed-in views of the subset region marked in
yellow in (a).

central part of the contaminated region. As all the valid pixels in
the moving window are involved in the coefficient estimation,
and that without any optimal filtration, the recovered image
shows obvious errors. The results of the MNSPI [see Fig. 3(c)]
and WLR [see Fig. 3(d)] methods reveal some close parallels.
The detailed zoomed-in regions in Fig. 4(j) and (k) exhibit evi-
dent reconstruction mistakes. This is primarily caused by the in-
correct temporal information borrowed from the adjacent areas
with significant changes. PM-MTGSR obtains a plausible result,
but the recovered spectral signals [shown in the zoomed in image
in Fig. 3(l)] are slightly different from that in the target image.
The two spatiotemporal-based methods generate results that are

visually closest to the target image. Specifically, the STARFM
result is spectrally inconsistent in the boundary of the recon-
struction region, as shown in Fig. 3(m). The proposed method
avoids this by implementing the residual correction strategy.

The six recovered images and the original clear image of
the second site are shown in Fig. 4; again, a detailed region is
provided to facilitate a visual comparison. In this case, the re-
stored area of the LLHM method [see Fig. 4(b)] presents serious
directional artifacts, and LLHM cannot capture the significant
temporal changes. The MNSPI [see Fig. 4(c)] and WLR [see
Fig. 4(d)] methods provide similar results again. Both their re-
stored results suffer from noise-like errors, and the changed
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TABLE I
QUANTITATIVE ASSESSMENT OF THE SIMULATED TEST FOR THE FIRST SITE

TABLE II
QUANTITATIVE ASSESSMENT OF THE SIMULATED TEST FOR THE SECOND SITE

spectral signature is not well recovered. The detailed region
shown in Fig. 4(j) and (k) reveals that the WLR result is even
more unsatisfactory in this case. PM-MTGSR [see Fig. 4(e)]
fails to reconstruct the changed land cover. In comparison, both
STARFM [see Fig. 4(f)] and the proposed method [see Fig. 4(g)]
produce a relatively favorable result when compared with that
of the other methods. The changed land covers are basically ac-
quired, and the recovered spectral signatures are much closer to
those of the original clear image than other methods. It should
be noted that the recovery ability of the proposed method for
small ground features is not optimal, because MODIS obser-
vations with a 500-m spatial resolution are spectrally mixed in
heterogeneous areas and are insufficient to provide temporal
information of small features.

A quantitative assessment of all the recovered results was
performed. Tables I and II list the RMSE and CC values for
the two tests. The conclusions from the visual inspection are
also supported by the quantitative indices. For both tests, the
proposed method obtains the lowest RMSE and highest CC
values in most bands, indicating that it achieves improved per-
formance. Additionally, as mentioned above, the second site ex-
perienced more dramatic changes in land cover due to its longer
acquisition interval. For this case, the proposed method is su-
perior to temporal-based methods, with better RMSE (lower)

and CC (higher) values. It can be concluded that the proposed
method shows an evident improvement over the other methods
for scenes with significant land cover changes. Regarding the
reconstruction ability in each band, we find that the proposed
method achieves best performance in most bands except NIR.
A much narrower NIR bandwidth is employed in the MODIS
sensor than that in the TM case (MODIS: 841–876 nm; TM:
760–900 nm), and the inconsistency in NIR band may go against
the fundamental assumption of spatiotemporal fusion that both
target source (i.e., TM) and auxiliary source (i.e., MODIS) are
spectrally comparable. As a consequence, the proposed method
may not perform as well as expected in NIR band.

B. Experiments With Time-Series Images

To further explore the robustness of the proposed algorithm,
a set of simulated experiments based on a Landsat-MODIS time
series was conducted. The second site from Section III-A. was
used, due to the dramatic changes it experienced during the
acquisition interval. The time series, which consists of 14 avail-
able Landsat-MODIS image pairs, indicates that the landscape
underwent different kinds of changes over time. Specifically,
the site was mainly dominated by phenological changes before
December 12, 2004, while it experienced significant land cover
changes thereafter.
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Fig. 5. Illustration of the cloud-removal procedure for the proposed method.
Each contaminated image on the target date was recovered using a fixed Landsat-
MODIS reference pair and the MODIS image on the target date.

To conduct the experiment, August 22, 2004, was fixed as the
reference date, and the other 13 dates were used as target dates.
Thirteen Landsat images were imposed with the same simu-
lated contamination as that described in Section III-A. A cloud
removal procedure was then carried out for each target image, as-
sisted by the cloud-free observations on the fixed reference date.
To be specific, for four temporal-based methods (i.e., LLHM,
MNSPI, WLR, and PM-MGTSR), the contaminated regions of
the 13 target images were recovered, respectively, using the
fixed cloud-free Landsat image as reference; for STARFM and
the proposed method, each target image was recovered using
the fixed Landsat-MODIS reference image pair and the corre-
sponding MODIS image acquired on the same date, as shown in
Fig. 5. The evaluation of algorithm performance was conducted
in a quantitative way. In addition to RMSE and CC, another two
indices—the average absolute difference (AAD) and the uni-
versal image quality index (UIQI)—were adopted for further
comparison. A lower AAD and a higher UIQI indicate better
reconstruction accuracy.

The quantitative assessment of the recovered results is dis-
played in Fig. 6. We can see that for most cases before Decem-
ber 12, 2004 (i.e., cases dominated by phonological changes),
PM-MTGSR performs better than the other methods. For most
cases after December 12, 2004, when significant land cover
changes occurred, the spatiotemporal fusion based methods ac-
quire the lowest AAD and RMSE values and the highest CC and
UIQI values; thus, demonstrating that they are superior to the
temporal-based methods. Specifically, the proposed method per-
forms slightly better than STARFM. The results indicate that the
temporal-based methods are able to achieve satisfactory results
with less input in cases dominated by phenological changes,
whereas the proposed method is good at handling scenes with
significant land cover changes.

C. Experiments With Observed Cloud Contamination

The cloud removal performance is mainly judged by visual
inspection for images with observed cloud cover. For scenes
with phenological changes, we can distinguish the performance
in terms of spectral coherence and spatial adjacency. Neverthe-
less, when major land cover changes occur, we cannot confirm
what exactly the land covers have turned into, even if we had
multitemporal images as a reference, so the recovered results of
this kind of scene are often unverifiable.

Fig. 6. Quantitative assessment results for the time-series experiments. (a)
AAD. (b) RMSE. (c) CC. (d) UIQI. Red dashed line indicates the point when
significant land cover changes occurred.

To solve this problem, a special case is provided in Fig. 7. The
chosen site covers an approximate area of 265 km2 (650 columns
× 650 lines at 25-m resolution). The Landsat image of January
29, 2005, is covered with cloud, as shown in Fig. 7(b). We can
see the approximate ground truth in the contaminated region
through the thin cloud, and thus, the target image itself can be
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Fig. 7. Data with observed clouds used for the algorithm testing (with the red, green, and blue bands as RGB). (a)–(b) Landsat images of October 25, 2004,
and January 29, 2005, respectively. (c)–(d) Resampled MODIS images corresponding to (a) and (b). (e) Cloud and cloud shadow mask of (b) obtained by visual
interpretation.

used for a visual comparison. The Landsat image acquired on
October 25, 2004 [see Fig. 7(a)] was taken as the reference in
this experiment. Significant land cover changes took place in
the contaminated region during the acquisition interval, and the
whole region turned into several land patches with distinctly
different spectral characteristics. Two MODIS images acquired
on the same date as the Landsat images were also used, as
shown in Fig. 7(c) and (d). Notably, due to the cloud mobility, the
MODIS image acquired on January 29, 2005 was actually cloud-
free. Given that cloud detection was not our primary concern in
this study, a cloud and cloud shadow mask of Fig. 7(b) produced
by visual interpretation is provided in Fig. 7(e).

The observed cloud-contaminated image, the six restored
cloud-free results, and images of the detailed subset region [see
as indicated in Fig. 8(a)] are displayed in Fig. 8. For the result of
the LLHM method [see Fig. 8(b)], the recovered area presents
serious spectral inconsistency compared with the ground truth,
and LLHM fails to capture the land cover changes. For the
results of MNSPI, WLR, and PM-MTGSR, a significantly
changed region [see Fig. 8(j), (k), and (l)] is zoomed in on for
a detailed comparison. It can be seen that none of the methods
effectively recover the white patch in Fig. 8(h). In compar-
ison, both STARFM [see Fig. 8(f)]and the proposed method [see
Fig. 8(g)] give the visually closest result to the ground truth,
and the white patch is successfully recovered. This is primar-
ily because the auxiliary MODIS images provide more reliable
temporal information for this area. Also, the result of STARFM
[see Fig. 8(m)] presents spectral distortion, whereas the result of
the proposed method does not suffer from this problem. It should
be mentioned that some small features cannot be captured by the
proposed method well. The large zoom factor of approximately
20 between the Landsat and MODIS observations causes the in-
formation loss of small features in the MODIS images, resulting
in the reduced performance.

IV. DISCUSSION

The temporal-based methods currently favored by the remote
sensing community are incapable of handling scenes with signif-
icant land cover changes, especially those with unfixed object
boundaries. There is, therefore, a need to develop new solu-
tions to these special cases. In this paper, we have presented a
cloud removal approach for scenes with significant land cover
changes. The experimental comparison with five benchmark
methods confirmed the reliability of the proposed method, i.e.,

it can effectively restore the changed land cover under clouds.
The quantitative evaluation indicated that the proposed method
can produce more accurate results and gain a more robust per-
formance than other methods if the scene experienced great
land cover changes. It’s noteworthy that our method special-
izes in scenes with significant land cover changes. In practical
applications, the selection of the cloud removal method (the
temporal-based or the newly proposed) should be based on spe-
cific conditions. The temporal-based group is more suitable for
phonological changes with fixed spatial tendency, whereas the
proposed method is recommended for land cover changes hav-
ing unfixed spatial tendency.

In this study, Landsat and MODIS data were chosen to con-
duct the experiments, but it should be noted that the proposed
method could also be applied to other data source combinations.
For example, the Sentinel-3A OLCI sensor revisits the same area
with a temporal resolution of <2.8 days, and the frequency will
even be shortened to <1.4 days after the launch of the twin satel-
lite [45]. It therefore holds the potential to replace the MODIS
data as auxiliary data in the reconstruction procedure. In ad-
dition, the twin Sentinel-2A and -2B satellites together deliver
optical images every five days, and their high spatial resolution
at 10 or 20 m produces even more detailed texture, so they could
also be an alternative choice if the acquisition dates match up
with the desired ones.

A. Technical Innovation of the Proposed Method

For scenes with significant land cover changes, the introduc-
tion of auxiliary images was the greatest contribution to the
improved performance of the proposed method. There is a high
possibility that the spatial coverage of objects varies over time
in these scenes. As a result, similar pixels in the reference im-
age may experience different temporal variability during the
acquisition interval. This is the reason why the temporal-based
methods have a poor ability to handle these special cases. In
comparison, the two introduced auxiliary images are fully ex-
ploited to capture the temporal variability of the land cover in the
newly developed method. Pixels in the auxiliary images tend to
provide more reliable information, since they present temporal
variability that is consistent with the missing pixels. The im-
proved idea plays a key role for scenes which have undergone
major land cover changes.

The implementation considerations in the spatiotemporal fu-
sion model also benefit the cloud removal performance. Abun-
dant similar information always exists within an image, since
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Fig. 8. Recovered results for the test with observed cloud (with the red, green, and blue bands as RGB). (a) Original observed Landsat image with cloud
contamination from January 29, 2005. (b)–(g) Images recovered by LLHM, MNSPI, WLR, PM-MTGSR, STARFM, and the proposed method, respectively.
(h)–(n) Zoomed-in views of the subset region marked in yellow in (a).

satellite-based observations usually cover a wide spatial range.
In order to enhance the accuracy and robustness of the predic-
tions, the data fusion model takes full advantage of the similar
pixels to describe the temporal variability of the land cover.
In addition, the previous temporal-based methods only set a
condition of spectral similarity to select similar pixels, while
the other standard of temporal consistency is used to weed out
those pixels with different temporal variability in this study. The
stricter filtering conditions make a critical difference for scenes
dominated by land cover changes.

Another innovation of the proposed method is the employ-
ment of residual correction. Given that some intrinsic differ-
ences of multisource data always exists in their radiometric
characteristics, the preliminary recovered patches generated
from the spatiotemporal data fusion may exhibit slight visual
disruption with their cloud-free neighborhood. To eliminate the
spectral inconsistency, a residual correction procedure is used

to adjust the estimated pixels in accordance with those in the
remaining regions. The introduced method mathematically for-
mulates the adjustment problem as Poisson equation, and solves
it using a global optimization process. A distinct advantage is
that the residual correction is conducted based on the patches
rather than pixels, and thus, the computational efficiency can be
expected to be improved.

B. Limitations of the Proposed Method

Undeniably, some shortcomings exist in the proposed method.
First, besides the close radiometric characteristics with the target
source, the auxiliary source should have a relatively high tem-
poral resolution to match the acquisition dates of the reference
and target images. However, due to the tradeoff between spatial
resolution and swath width, the auxiliary data source usually
has a low spatial resolution. For example, the MODIS images
used in this paper, with a spatial resolution of 500 m, are insuf-
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ficient to capture details of some small features, especially over
heterogeneous landscapes. Under this circumstance, the mod-
eled temporal variability may have some errors, thus, reducing
the reconstruction accuracy. A recent study attempted to fuse
250-m MODIS red and NIR bands with 500-m MODIS bands,
using the area-to-point regression kriging approach to produce
250-m MODIS bands and enhance the spatiotemporal fusion
[46]. The generated 250-m MODIS images could take the place
of the original 500-m images to improve the final accuracy.

Second, some inherent radiometric differences inevitably ex-
ist in the multisource data. As a result of these differences,
the generated results from spatiotemporal data fusion may have
some visual disruption between the reconstructed areas and the
original cloud-free areas. In this paper, a patch-based residual
correction procedure based on Poisson equation was used to ease
the problem. Some radiometric normalization algorithms for
multisource data could be embedded into the method to reduce
the spectral inconsistency, and thus, more accurate cloud-free
results may be obtained.

V. CONCLUSION

In this paper, a cloud removal method based on spatiotempo-
ral data fusion has been proposed, specifically aiming at scenes
with significant land cover changes. In addition to a cloud-free
multitemporal image, we further introduce two auxiliary images
from another data source into the reconstruction process. Three
aspects in the proposed method contribute to the final estima-
tion. First, the two auxiliary images are employed to capture the
temporal variability of the land cover, and thus, the problem en-
countered by the temporal-based methods can be avoided. The
similar information in the remote sensing scenes is then fully
utilized to enhance the robustness of the prediction. Finally, a
residual correction procedure based on Poisson equation is in-
corporated into the proposed method to enhance the spectral
coherence between the recovered and remaining regions. Both
simulated and real-data experiments demonstrated that the pro-
posed method can achieve a satisfactory performance for scenes
with significant land cover changes, compared with the existing
temporal-based methods. The proposed method acts a techni-
cal supplement to the current thick cloud removal framework,
making it possible to handle scenes with significant land cover
changes. In our future work, the proposed method will be com-
bined with temporal-based methods to build a complete cloud
removal framework, realizing the goal of dealing with different
kinds of changes.
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