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A B S T R A C T

Satellite-derived aerosol optical depth (AOD) has been widely used to estimate ground-level PM2.5 concentra-
tions due to its spatially continuous observation. However, the coarse spatial resolutions (e.g., 3 km, 6 km, or
10 km) of the primary satellite AOD products have weakness to capture the characteristics of urban-scale PM2.5

patterns. Moreover, high-resolution (e.g., 1 km) PM2.5 estimations are still unable to be related to the urban
landscape or to small geographical units, which is crucial for analyzing the urban pollution structure. In this
study, the daily PM2.5 concentrations were estimated using the new AOD data with a 160m spatial resolution
retrieved by the Gaofen-1 (GF) wide field of view (WFV) along with the nested linear mixed effects model and
ancillary variables from the Weather Research & Forecasting (WRF) meteorological simulation data. The ex-
periment was conducted in Wuhan, Beijing, and Shanghai, which suffers from severe atmospheric fine particle
pollution in recent years. The proposed model performed well for both GF and Moderate Resolution Imaging
Spectroradiometer (MODIS), with slight over-fitting and little spatial autocorrelation. Regarding to the GF PM2.5

estimation, model fitting yielded R2 values of 0.96, 0.91 and 0.95 and mean prediction error (MPE) of 10.13,
11.89 and 7.34 μg/m3 for Wuhan, Beijing and Shanghai, respectively. The site-based cross validation achieved
R2 values of 0.92, 0.88 and 0.89, and MPE of 13.69, 16.76 and 12.59 μg/m3 for Wuhan, Beijing and Shanghai,
respectively. The day-of-years based cross validation resulted in R2 of 0.54, 0.58 and 0.50, and MPE of 30.46,
27.12 and 31.58 μg/m3 for Wuhan, Beijing and Shanghai, respectively, indicating that it was practicable to
estimate the GF PM2.5 in the days without enough AOD-PM2.5 matchups. The ultrahigh resolution PM2.5 esti-
mations offer substantial advantages for providing finer spatially resolved PM2.5 trends. Additionally, it offers
new approaches to locate main PM2.5 emission sources, evaluate the local PM2.5 contribution proportion, and
quantify the daily PM2.5 emission level via remote sensing techniques. Along with the joint observations via
other high-resolution satellites, the temporal resolution of GF PM2.5 will be further improved. In all, this study
not only provides possibilities for further applications in the precise analysis of urban inner PM2.5 pollution
patterns but also establishes a foundation for constructing a high-resolution satellite air monitoring network in
China.

1. Introduction

Numerous epidemiological studies have demonstrated that exposure
to particulate matter with an aerodynamic diameter of< 2.5 μm
(PM2.5) is associated with a variety of adverse health effects, including
cardiovascular and respiratory diseases, further influencing morbidity

and mortality (Beelen et al., 2014; Dockery et al., 1993; Hoek et al.,
2013; Pope et al., 2002; Sacks et al., 2011). Population exposure to
PM2.5 was traditionally conducted by extending ground-level mea-
surements to a certain region, however, this method tended to under-
estimate health risks due to exposure misclassification (J. Hu et al.,
2014; X. Hu et al., 2014; Pinto et al., 2004; Qian et al., 2016).
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Therefore, the spatially and temporally continuous estimation of PM2.5

is significant for epidemiological research and effective assessments of
atmospheric quality (Li et al., 2011; Van et al., 2015).

In contrast to the limited spatial coverage of ground monitoring,
satellite remote sensing techniques can provide spatially continuous
observations and has therefore been adopted to estimate ambient PM2.5

(Che et al., 2014; Gupta et al., 2006; Zhang et al., 2016a). Since the
satellite-derived aerosol optical depth (AOD) measures the total light
extinction consisting of aerosol absorption and scattering in a specific
atmospheric column, AOD is related to the loadings of particular matter
in that column to a certain extent (Chu et al., 2003; Engelcox et al.,
2004; Zhang et al., 2016b). A series of AOD products derived from
satellite sensors, mainly including the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Hu et al., 2013a; Liu et al., 2007a; Ma
et al., 2016; Zhang et al., 2009), the Visible Infrared Imaging Radio-
meter Suite (VIIRS) (Oo et al., 2013; Wu et al., 2016), and the Multi-
angle Imaging SpectroRadiometer (MISR) (Liu et al., 2007a; Liu et al.,
2007b; Liu et al., 2007c) have been adopted in previous studies to es-
timate ambient PM2.5 concentrations. However, the MODIS, VIIRS, and
MISR have nominal spatial resolutions for AOD retrieval of 10 km (3 km
via dark target algorithm), 6 km (750m in VIIRS intermediate product),
and 17.6 km, respectively, which is generally too coarse for precise
exposure estimates in urban areas (Chudnovsky et al., 2014). Along
with the development of the Multi-Angle Implementation of Atmo-
spheric Correction (MAIAC) algorithm, which provide MODIS AOD
products with 1 km resolution (Lyapustin et al., 2011a; Lyapustin et al.,
2011b; Lyapustin et al., 2012), estimations of PM2.5 with 1 km resolu-
tion have been conducted to investigate the spatial patterns of PM2.5

and pollution levels at the urban scale (Chudnovsky et al., 2013;
Chudnovsky et al., 2014; J. Hu et al., 2014; X. Hu et al., 2014; Hu et al.,

2013b; Qian et al., 2016).
Nevertheless, current studies could only adopt ground-monitored

PM2.5 to explore the effects of urban landscape patterns on PM2.5 (Wu
et al., 2015; Zhang et al., 2015), because the current spatial resolution
of PM2.5 estimation is still too coarse to meet the requirements perfectly
for analyzing urban pollution structure or the relationship between the
urban landscapes and PM2.5 concentrations. Since the distribution of
ground-monitoring sites is generally sparse and spatially uneven, the
urban analysis based on ground-monitored PM2.5 cannot represent in-
tegral situations to a certain extent. Therefore, it is necessary to esti-
mate PM2.5 concentrations with ultrahigh spatial resolution via high-
resolution AOD retrievals, especially in urban areas. Based on our re-
cent study, GaoFen-1 (GF) wide field of view (WFV) was applied to
retrieve AOD with a 160m spatial resolution (Sun et al., 2017); these
measurements can then be used to obtain PM2.5 estimations at this
resolution. Moreover, GF AOD has been demonstrated to cover urban
surfaces by correcting the background atmospheric effect and obtaining
local aerosol models; these data achieved ideal validation results when
compared to ground sun-photometer measurements in central China
(Sun et al., 2017). This GF AOD with ultrahigh spatial resolution can
provide potential applications in locating emission sources of atmo-
spheric pollutants and can offer new opportunities for exploring PM2.5

problem at the district scale, block scale, or even building scale in cities
under dense urbanization. In addition, the linear mixed effects (LME)
model was first applied in estimating PM2.5 concentrations in 2011 (Lee
et al., 2011), which was then widely adopted due to its great power in
making highly accurate estimates of PM2.5 concentrations via remote
sensing techniques (Lee et al., 2011; Xie et al., 2015; Ghotbi et al.,
2016). Because the original LME model failed to predict PM2.5 in the
days without PM2.5-AOD matchups, the nested linear mixed effects

Fig. 1. Study areas with the terrain height and locations of the state-controlled PM2.5 monitoring stations.
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model was developed to improve the temporal coverage of satellite-
derived PM2.5 (Ma et al., 2016). Based on the characteristics of the GF
revisit period, the day-specific and month-specific nested LME model
was developed in this study to estimate GF PM2.5 with better temporal
coverage.

The primary objective of this study is to evaluate the performance of
ground-level PM2.5 estimation in three representative cities of China via
a nested LME model using 160m GF AOD combined with three nested
Weather Research & Forecasting (WRF) meteorological simulation data
as ancillary parameters. The spatial patterns and accuracy of the GF
PM2.5 estimations were evaluated using model fitting, site-based cross-
validation and day-of-years based cross-validation. The advantages of
the PM2.5 estimation with ultrahigh spatial resolution were then dis-
cussed by using current mainstream PM2.5 estimations as references.
The extra value of GF PM2.5 was demonstrated through a case analysis,
i.e. potential applications for locating and quantifying the main sources
of PM2.5 emissions in Wuhan. Finally, the limitations of GF PM2.5 were
discussed, and future work was accordingly proposed to solve the re-
maining problems in spatial variation and temporal resolution.

2. Materials and methods

2.1. Study area

The experimental areas in this study focused on three major cities in
China, including Wuhan, Beijing, and Shanghai. As illustrated in Fig. 1a
and c, Wuhan, which is one of the largest cities in central China, is
located at the confluence of the Yangtze River and Han River. Leading
the Rise of Central China Plan, Wuhan has gradually become one of the
significant pivots in industry, transportation and economy. However,
due to the rapid development of urbanization and industrialization,
which includes construction, smelting and cement processing, atmo-
spheric pollution problems have become increasingly prominent (Wang
et al., 2015; Wang et al., 2013), raising concern from both the gov-
ernment and public (Song et al., 2016). As shown in Fig. 1a and b,
Beijing, which is the capital of China, is located in the northern part of
the North China Plain. Given the dense industrialization, urbanization
and motorization in recent years, particulate pollution, especially PM2.5

pollution, has become a problem that demands prompt solution in
Beijing (Han et al., 2014; J. Hu et al., 2014; X. Hu et al., 2014). As
demonstrated in Fig. 1a and d, Shanghai, which is the economic center
of China, is located in eastern China. Leading the rapid economic
growth and accelerated urbanization in the Yangtze River Delta,
Shanghai also suffers from severe air quality problems from PM2.5

pollution in recent years (J. Hu et al., 2014; X. Hu et al., 2014; Qiao
et al., 2016).

2.2. PM2.5 measurements

The national air quality monitoring network in China has been es-
tablished by the Chinese Ministry of Environmental Protection (MEP)
since 2013. The hourly datasets of the mass concentration of PM2.5,
which are measured using the tapered element oscillating microbalance
(TEOM) method or β-attenuation monitors, can be downloaded from
the website of the China Environmental Monitoring Center (http://113.
108.142.147:20035/emcpublish/). Fig. 1 shows the locations of mon-
itoring stations in three cities that measured the hourly PM2.5 data for
the experimental period from 2014 to 2015. Since the GF-1 WFV passed
over equator at approximately 10:30 a.m. local time, the averaged
PM2.5 of the measured PM2.5 at 10:00 a.m. and 11:00 a.m. was adopted
in modeling to correspond to the GF AOD.

2.3. Satellite data

2.3.1. GF-1 WFV-derived AOD and validation
The GaoFen-1 was the first satellite of the civilian High-Definition

Earth Observation Satellite (HDEOS) project in China and was launched
in April 2013. This satellite has four integrated WFV cameras possessing
four multi-spectral bands, spanning from the visible to the near-infrared
region, with a 16m spatial resolution. The swath width of the four
combined WFV reached to 800 km, which theoretically achieves a
temporal resolution of four days, which is better than that of other high
spatial resolution satellites (such as Landsat of 16-day temporal re-
solution), providing the capability for atmospheric observation and
monitoring at large scales (Li et al., 2017). The GF imagery data were
resampled to a 16m spatial resolution after homogenized radiation
calibration and systematic geometric correction on four WFV cameras,
and these data were adopted for AOD retrieval in this study. The pre-
processes primarily consisted of precise geometric correction, radio-
metric calibration, gaseous absorption correction, and cloud mask. The
precise geometric correction ensured accuracy within 2 pixels, and
radiometric cross-calibration was conducted using Operational Land
Imager (OLI) data from Landsat 8, especially for the WFV cameras
without onboard calibration (Feng et al., 2016). GF AOD was simulated
based on the establishment of look-up-table (LUT) via the 6S radiative
transfer model with local aerosol types and build of surface reflectance
database (Sun et al., 2017). Because using an inappropriate aerosol
model has been demonstrated to influence the accuracy of AOD re-
trieval (Li et al., 2007), the local aerosol model used for GF AOD re-
trieval in this study was obtained from long-term sun-photometer ob-
servations due to complex aerosol optical properties in Wuhan (Wang
et al., 2015). Another key point in GF AOD retrieval is determination of
the surface reflectance, as a higher spatial resolution would result in a
more complex surface reflectivity. The clear sky composite technique,
which is widely used in the MODIS deep blue (DB) algorithm (Levy
et al., 2013) and in the high-resolution AOD retrieval from MODIS and
Landsat (Luo et al., 2015; Man et al., 2011), was used for GF AOD re-
trieval allowing for its relatively high temporal and spatial resolution.
This method was improved on identification of the clearest days, and
correction of the background atmospheric effect was applied at a
10× 10 window scale (corresponding to 160m spatial resolution). In
addition to that, our latest studies about geometrical calibration (Zhang
et al., 2017) and cloud detection (Li et al., 2017) for GF-1 WFV con-
tributed to the GF-1 AOD retrievals in Beijing and Shanghai.

Moreover, the validation between GF-derived AOD and ground-
observed AOD was conducted to ensure the credibility of GF AOD, and
the detailed collocation criterion and the validation results were de-
scribed in our previous research (Sun et al., 2017) and supporting in-
formation (SI, Text S1, Fig. S1, and Fig. S2). Good relationships were
shown between the GF AOD and ground measurements, with coeffi-
cients of determination (R2) of 0.80, 0.77, and 0.71 in Wuhan, Beijing,
and Shanghai, respectively. In addition, validation against the opera-
tional MODIS Collection 6 (C6) DB AOD with 10 km spatial resolution
showed reasonable relationships, with R2 values of 0.66, 0.70, and
0.75, respectively (SI, Text S1, Fig. S3, and Fig. S4). In this study, all the
validated GF AOD data from January 2014 to December 2015 were
applied into model construction by filtering out the AOD values ad-
jacent to clouds because of the unreliable AOD retrieval at cloud edges
(Just et al., 2015).

2.3.2. MODIS-derived AOD
For comparison and reference, the Terra DB AOD products with a

10 km spatial resolution were adopted in this study. These products
were selected because the GF-1 satellite, which was designed with sun
synchronous recurrent orbit, crosses the equator at approximately the
same time as Terra (approximately 10:30 a.m. local time). Moreover,
the GF AOD retrieval algorithm was similar to the MODIS DB AOD
retrieval algorithm. The Level 2 aerosol products from MODIS C6 were
downloaded from National Aeronautics and Space Administration
(NASA) Level 1 and Atmosphere Archive and Distribution System
(LAADS) (http://ladsweb.nascom.nasa.gov/) for 2014–2015, and only
those AOD retrievals that achieved the required quality assurance (QA)
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flag were used (QA flag= 2 or 3 for DB AOD) to ensure the accuracy of
the coefficient estimation in the nested LME model (Ma et al., 2016;
Song et al., 2014).

2.3.3. MODIS-derived vegetation index
The Normalized Difference Vegetation Index (NDVI) and Enhanced

Vegetation Index (EVI) are vegetation indexes that represent vegetation
biomass (Huete et al., 2002). The Terra-MODIS NDVI datasets and
Terra-MODIS EVI datasets, with a spatial resolution of 250m×250m
and a temporal resolution of 16 days (MOD13Q1), were obtained from
NASA LAADS (http://ladsweb.nascom.nasa.gov/) during the experi-
mental period.

2.4. Meteorological data

The hourly meteorological parameters with a 3 km spatial resolu-
tion were derived from the WRF model. WRF is a new-generation me-
soscale numerical weather prediction system that offers both meteor-
ological applications and operational forecasts (http://www.wrf-model.
org/index.php) (Bai et al., 2016; Zheng et al., 2015; Zheng et al., 2016).
In this study, the WRF Processing System (WPS) v3.6 was used to
generate the initial and boundary conditions based on the three nested
domain using the National Centers for Environmental Prediction Final
Analysis (NCEP-FNL) reanalysis datasets (http://cfs.ncep.noaa.gov/).
WRF v3.4.1 was then employed to drive a one-way nested simulation
with resolutions of 27 km, 9 km, and 3 km. The selection of physical
options for the WRF simulation mainly included the single-moment 6-
class (WSM6) microphysics, the rapid radiative transfer model (RRTM)
longwave radiation scheme, the Dudhia shortwave radiation scheme,
the Monin-Obukhov surface-layer scheme, the Noah land surface
model, the Yonsei University (YSU) planetary boundary layer model,
and the Kain-Fritsch cumulus parameterization scheme. The wind speed
lag used in this study was the summation of hourly wind speed at 10m
above the ground in the last 24 h. The other meteorological parameters
adopted in this study were averaged parameters at 10:00 a.m. and
11:00 a.m., when the Gaofen-1 satellite passed over experimental re-
gions (i.e., approximately 10:30 a.m. local time). Validation of the
modeled meteorological parameters was conducted and discussed in
detail based on datasets from the National Climate Data Center (NCDC)
in SI (Text S2, Table S1, Table S2, and Table S3).

2.5. Data integration

In this study, data integration was performed to ensure that dif-
ferent categories of parameters were spatially consistent before being
included in the model. The WRF simulated data under Lambert pro-
jection and Terra-MODIS vegetation index datasets were first re-
projected into the World Geodetic System 1984 (WGS84) geographic
coordinate system and were then resampled using bilinear interpolation
to match the AOD grids. Moreover, the AOD values, NDVI/EVI values,
and WRF meteorological parameters were both extracted by averaging
3×3 pixels centered on the grid where the monitoring stations were
located. From the temporal perspective, all the parameters except the
wind speed lag were integrated to the average of values at 10:00 a.m.
and 11:00 a.m. local time to correspond to the period that GF passed
over equator.

2.6. Model structure and validation

In order to develop a reasonable LME model structure, the stepwise
selection of auxiliary variables was conducted, following the principle
to yield the statistical significance of each variable at the 0.05 level,
maximize the model accuracy (R2), and minimize the Akaike informa-
tion criterion (AIC). In addition, the fixed and random effects settings,
as well as the site-effect parameters for spatial adjustment (Lee et al.,
2011; Xie et al., 2015), were also determined by stepwise selection. The

detailed selection procedures in Wuhan, Beijing, and Shanghai were
described in SI (Text S3, Table S4, Table S5, and Table S6).

The classic LME model is widely acknowledged to be applied in
estimating high-accuracy PM2.5 using satellite-derived AOD, however,
it fails to predict PM2.5 concentrations in the days without AOD-PM2.5

matchups. A nested LME model with month-, week-, and day-specific
random effects was accordingly proposed to abate this deficiency (Ma
et al., 2016). Since the temporal resolution of Gaofen-1 WFV is rela-
tively low, the nested LME model can help make use of nearly every
valid GF AOD image. Nevertheless, considering the revisiting period of
GF WFV and cloud obscuration, there hardly existed over two days,
which possessed adequate AOD-PM2.5 matchups, in one week. There-
fore, we developed a day-month nested LME model instead of the day-
week-month nested LME model in previous research, as the model re-
dundancy would be brought by day-week-month nested LME when
estimating PM2.5 based on GF AOD. The final LME model structure used
in Wuhan, Beijing, and Shanghai can be expressed as Eq. (1), Eq. (2),
and Eq. (3), respectively.
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where PM2.5, st is the mass concentration of the PM2.5 measurements
(μg/m3) from the monitoring station at location s in the day of years
(DOY) t at the time period in which the GF satellite passed over; b0 is
the fixed intercept; (b0, t, Month,b0, t, Day) are nested random intercepts
that include the linear regression intercepts for each month (b0, t, Month)
and each day (b0, t, Day) via available matchups in the experimental
period; AODst is the GF-WFV/Terra-MODIS AOD value (unitless) at lo-
cation s on DOY t; WS10Lagst is the summation of the wind speed (m/s)
in the last 24 h from the time period in which the GF satellite passed
over at location s on DOY t; SH2st and PBLHst are the specific humidity
(SH) (g/kg) and planetary boundary layer height (PBLH) (km) at lo-
cation s on DOY t at the time period in which GF satellite passed over,
respectively; b1, b2, b3, and b4 are the fixed slopes for AOD, wind speed,
SH, and PBLH, respectively; (b1, t, Month,b1, t, Day), (b2, t, Month,b2, t, Day),
and (b5, t, Month,b5, t, Day) are nested random slopes for AOD, WS10Lag,
and EVI, respectively, which include the linear regression slopes for
each month and each day via the available matchups in the experi-
mental period; si~N(0,σs2) is the random intercept term representing
the site-effect at location s; and Ψ is the variance–covariance matrix of
the day-specific and month-specific random effects. The fixed effects on
the slopes of AOD, wind speed, SH, PBLH, EVI, and temperature ac-
counted for the average effects on the PM2.5 during the entire experi-
mental period, while the random effects on slopes of AOD, wind speed,
and EVI represented the daily variability or monthly variability in their
relationships with PM2.5. In addition, the site-effect term was inter-
polated spatially onto each pixel when predicting PM2.5 map, based on
inverse distance weighted (IDW).

To evaluate the performance of the nested LME model, several
statistical indicators, including the R2, the mean prediction error (MPE)
and the square root of the mean squared prediction errors (RMSPE),
were calculated between the estimated PM2.5 against the ground-level
monitoring PM2.5. The formulas for MPE and RMSPE are shown as
follows:
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∑= −
=N
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N
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t

N
t t1

2
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The N represents the number of predicted-measured PM2.5 pairs.
The MPE measures the average deviation between predicted values and
measured values, and the RMSPE further indicates the degree of dis-
persion in deviations, which could testify as to whether there existed
large deviations in PM2.5 estimations. Additionally, the leave-one-out
cross validation (LOOCV) (Kohavi, 2001) approach was adopted to
examine for potential over-fitting situations, in which the model might
perform better on part of the data adopted to fit the model than on
untrained data (J. Hu et al., 2014; X. Hu et al., 2014). Since the size of
datasets applied into modeling was relatively small, the LOOCV method
was conducted based on the monitoring station level (site-based CV)
instead of the entire samples (sample-based CV). Each monitoring sta-
tion was withheld in turn, and the predictors were accordingly esti-
mated by exactly refitting the LME model 12 times in Beijing and 10
times in Wuhan and Shanghai. Since the absolute minimum number of
matched observations requited to solve an intercept and a slope is two,
it should be mentioned that at least three observations per day were
required in this study to improve overall model performance (J. Hu
et al., 2014; X. Hu et al., 2014, Wu et al., 2016). Under this condition,
nearly 21%, 16%, and 32% of days respectively in Wuhan, Beijing, and
Shanghai were removed in the modeling. In addition to that, since the
datasets for modeling and validation generally had the same days, the
site-based CV cannot be adopted to evaluate the model performances in
those days without PM2.5-AOD matchups. Therefore, learning from
previous studies (Chang et al., 2013; Ma et al., 2016), we also adopted a
DOY-based cross validation (DOY-based CV) to assess the accuracy of
model prediction in those days beyond the modeling days. In this case,
because there were less than ten days that had PM2.5-AOD matchups in
one month, the days with PM2.5-AOD matchups in each month were
randomly divided into two subsets. Then, each subset was withheld in
turn, and the predictors were accordingly estimated by the nested LME
model using the other subset.

3. Results

3.1. Descriptive statistics

The descriptive statistics of the dependent variable and independent
variables used in the nested LME model are illustrated in Table 1, in-
cluding the mean, maximum (Max), minimum (Min), and standard
deviation (Std.Dev.) for these variables. Overall, the maximum PM2.5

concentrations in Wuhan, Beijing, and Shanghai during the experi-
mental period reached up to 353.50 μg/m3, 338.00 μg/m3, and

345.00 μg/m3, respectively. In addition, the average PM2.5 concentra-
tions during the experimental period respectively reached up to
95.66 μg/m3, 90.44 μg/m3, and 73.84 μg/m3, which was respectively
173%, 158%, and 111% greater than the Level 1 of the World Health
Organization Air Quality Interim Target (WHO-IT1: 35 μg/m3) (WHO,
2006). According to the Chinese standard of ambient air quality (China,
M. E. P., 2012), approximately 55.8%, 30.1%, and 39.9% of daily PM2.5

concentrations exceeded the allowable standard (75 μg/m3) in Wuhan,
Beijing, and Shanghai, respectively. Thus, it was demonstrated that
these three cities all suffered from severe fine particle pollution during
this period.

3.2. Results of the model fitting and validation

The fixed slopes of each independent variable in the nested LME
model fitting with GF AOD are presented in Table 2. For comparison,
the fixed slopes of each independent variable in the similar LME model
with MODIS DB AOD were estimated, as shown in Table 2. The matched
data in days with both GF AOD and MODIS DB AOD available was used
in this study for rigorous comparison strategy, and there were 60, 76,
and 50 days of datasets in total for modeling during the experimental
period in Wuhan, Beijing, and Shanghai, respectively. The intercept and
slope of each variable in the nested LME model with GF AOD and
MODIS DB AOD were statistically significant at the α=0.05 level. In
Wuhan, AOD had a positive relationship with the PM2.5 concentrations,
while the wind speed, SH, and PBLH had negative relationships with
the PM2.5 concentrations. In Beijing, AOD had a positive relationship
with the PM2.5 concentrations, while the EVI and wind speed had ne-
gative relationships with the PM2.5 concentrations. In Shanghai, AOD
had a positive relationship with the PM2.5 concentrations, while the
temperature and wind speed had negative relationships with the PM2.5

concentrations. Whether the relationship was positive or negative pri-
marily depended on their influence on the PM2.5 concentration. Since
AOD is positively related to the amount of atmospheric particles, a
higher AOD level represents a higher PM2.5 concentrations as PM2.5

accounts for a certain proportion of particles in the air (Wu et al.,
2016). The wind speed was negatively correlated with the ground-level
PM2.5 concentrations, indicating that the dilution effect of wind for
atmospheric particles predominated (Liu et al., 2007a; Zhang et al.,
2016c). A higher PBLH can not only expand the near-surface atmo-
sphere but also facilitate vertical convection; thus, the PBLH had a
negative relationship with the ground-level PM2.5. Since the measure-
ments of the PM2.5 concentrations represent only dry particles (Liu
et al., 2005), more water vapor would lead to lower PM2.5 measure-
ments when the AOD value remains constant (Lin et al., 2015).
Therefore, SH, which characterizes the mass proportion of water vapor

Table 1
Descriptive statistics of the dependent variable and independent variables used
in the nested LME model.

Mean Max Min Std. dev.

Wuhan PM2.5 (μg/m3) 95.66 353.50 4.00 63.99
AOD (unitless) 0.96 4.26 0.11 0.69
WS10Lag (m/s) 2.68 5.70 0.79 1.01
Specific Humidity (g/kg) 7.45 20.78 1.51 5.36
PBLH (km) 0.51 1.29 0.07 0.24

Beijing PM2.5 (μg/m3) 90.44 338.00 6.00 57.65
AOD (unitless) 0.46 3.79 0.10 0.33
EVI (unitless) 0.15 0.74 0.01 0.13
WS10Lag (m/s) 2.15 7.37 0.17 1.29

Shanghai PM2.5 (μg/m3) 73.84 245.00 6.50 49.49
AOD (unitless) 0.71 3.05 0.01 0.42
Temperature (K) 286.90 302.64 273.26 8.29
WS10Lag (m/s) 2.67 6.68 0.39 1.15

Table 2
Fixed slopes of each independent variable in the nested LME model with GF
AOD and MODIS DB AOD.

GF MODIS DB

bi P-value bi P-value

Wuhan Intercept 109.96 < 0.001 112.42 <0.001
AOD 25.46 < 0.001 26.08 <0.001
Wind speed lag −6.23 < 0.001 −7.47 <0.001
SH −5.10 < 0.001 −4.13 <0.001
PBLH −2.75 < 0.05 −5.86 <0.05

Beijing Intercept 45.12 < 0.001 42.39 <0.001
AOD 50.53 < 0.001 51.15 <0.001
EVI −28.56 < 0.001 −13.34 <0.001
Wind speed lag −1.39 < 0.01 −1.53 <0.01

Shanghai Intercept 94.92 < 0.001 98.51 <0.001
AOD 37.24 < 0.001 40.31 <0.001
Temperature −0.12 < 0.001 −0.15 <0.001
Wind speed lag −4.70 < 0.01 −3.92 <0.01
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in the atmosphere, played a negative role in the increase of ground-
level PM2.5. The EVI, representing the vegetation variation, can reflect
the extent of capturing particulate matters in leaf wax or on plant leaf
surfaces (Nowak et al., 2006; Pugh et al., 2012), which possessed a
negative role in PM2.5 estimation. The temperature in Shanghai had a
negative relationship with the ground-level PM2.5, which indicated that
the negative role such as volatilization of ammonium nitrate at higher
temperature (Dawson et al., 2007) was dominant, while the positive
role such as higher temperature accelerating the generation of sec-
ondary particles (Liu et al., 2007a; Tai et al., 2010) was overwhelmed in
Shanghai.

Linear regression was conducted to fit the estimated PM2.5 con-
centrations to the measured PM2.5 concentrations, combined with the
calculation of R2, MPE, and RMSPE for model fitting, site-based CV, and
DOY-based CV, respectively. As shown in Fig. 2, the R2 values for the
GF model fitting in Wuhan, Beijing, and Shanghai reached up to 0.958,
0.910, and 0.949, respectively. The R2 values for GF site-based CV in
these three cities were relatively high, achieving 0.915, 0.883, and
0.894, respectively. The MPE and RMSPE of GF model fitting and GF
site-based CV in these three cities were relatively low. Thus, it was
indicated that the PM2.5 retrieved by GF AOD agreed well with the
ground-level PM2.5 measurements. As reference, the model fitting and

Fig. 2. Model fitting, site-based cross validation, and DOY-based cross validation of the estimated PM2.5 against the measured PM2.5 in Wuhan, Beijing, and Shanghai.
The dashed red lines are the 1:1 reference lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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cross validation for MODIS DB represented the PM2.5 estimated by
MODIS DB AOD showed good consistency with the ground-level PM2.5

measurements, with R2 values of 0.925 and 0.906 in Wuhan, 0.879 and
0.854 in Beijing, and 0.920 and 0.904 in Shanghai, respectively.
Moreover, a certain extent of model over-fitting occurred in both sa-
tellites in three cities. From model fitting to site-based CV, there existed
over-fitting situations for both the GF model and MODIS DB model in
Wuhan, with R2 decreasing by 0.043 and 0.019, MPE increasing by
3.559 and 2.836 μg/m3, and RMSPE increasing by 3.471 and 2.646 μg/
m3, respectively. Similarly, R2 decreased by 0.027 and 0.025, MPE in-
creased by 4.87 and 3.686 μg/m3, and RMSPE increased by 4.125 and
3.131 μg/m3, respectively for the GF model and MODIS DB model in
Beijing. Analogously in Shanghai, R2 decreased by 0.055 and 0.016,
MPE increased by 5.246 and 0.267 μg/m3, and RMSPE increased by
5.533 and 1.065 μg/m3, respectively for the GF model and MODIS DB
model. The results above indicated that the over-fitting level in MODIS
DB model was relatively slighter than that in GF model, which was
probably caused by an insufficient number of GF matched data per day
(J. Hu et al., 2014; X. Hu et al., 2014). Overall, considering the R2 for
cross validation was relatively high in both the GF model and MODIS
DB model, while the MPE and RMSPE were relatively low, this slight
over-fitting could be neglected to some extent (Wu et al., 2016), and the
PM2.5 estimations by GF AOD and MODIS DB AOD were considered
reliable. In addition to that, the DOY-based CV R2 reached to 0.538,
0.578, and 0.500 for GF model in Wuhan, Beijing, and Shanghai, re-
spectively, and the MPE and RMSPE were both relatively high. It should
be mentioned that if there were less than two days that possessed en-
ough matchups for modeling in one month, the datasets in this month
would just be adopted for modeling. Thus, the number (N) of DOY-
based CV was less than the original number for both MODIS DB model
and GF model in Wuhan and Shanghai. In general, this was indeed not
an ideal validation result. Nevertheless, the results could barely meet
the requirement for application, which was much better than the lack of
PM2.5 estimation for the day. Through the nested model, additional
16 days of PM2.5 estimations beyond the original 60 days in Wuhan,
additional 15 days of PM2.5 estimations beyond the original 76 days in
Beijing, and additional 24 days of PM2.5 estimations beyond the original
50 days in Shanghai were derived when there were not enough PM2.5-
AOD matchups for modeling on those days. Thus, it was practical to
adopt the nested LME model to predict PM2.5 in the days without PM2.5-
AOD matchups.

3.3. Estimation of PM2.5 concentrations

The seasonal averaged PM2.5 estimated using GF AOD in Wuhan,
Beijing, and Shanghai are shown in Fig. 3, while the annual averaged
PM2.5 estimations and annual mean ground-level PM2.5 measurements
for each monitoring station are demonstrated in Fig. 4a–c and g–i, re-
spectively. The annual averaged residuals at all monitoring stations in
three cities were approximately 0. The annual averaged absolute re-
sidual at each monitoring station in Wuhan, Beijing, and Shanghai
ranged from 10.326 to 10.981 μg/m3, 11.282 to 12.537 μg/m3, and
7.254 to 7.603 μg/m3, respectively. In addition to that, the Moran's I for
both seasonal and annual averaged absolute residuals in three cities
were< 0.1 which indicated spatial autocorrelation hardly existed.

From the perspective of spatial distribution in annual averaged es-
timations, the ambient PM2.5 concentrations were relatively high in the
urban areas, which are mainly located in the center of Wuhan, the
central and southern regions of Beijing, and the central and northwest
regions of Shanghai. The ambient PM2.5 concentrations were relatively
low in the rural areas, mountainous areas, or coastal areas, especially in
the northern and eastern regions of Wuhan, in northern and western
regions of Beijing, and in southern and eastern regions of Shanghai.
Directly from Fig. 4a, the red areas represented the urban compre-
hensive regions, while the blue-green areas corresponded to mountai-
nous regions in Wuhan. In Fig. 4b, the red and orange areas showed the

main urban comprehensive regions, while the blue-green areas re-
presented mountainous areas in Beijing. From Fig. 4c, the red and or-
ange areas represented part of the urban regions and industrial zones,
while the blue-green areas corresponded to the rural areas and coastal
areas in Shanghai.

In addition to that, the seasonal averaged estimations of PM2.5 were
studied using the same color bar, in order to highlight their seasonal
variations. In Wuhan, severe PM2.5 pollution occurred in winter, with
over 120 μg/m3 in whole regions because of the dense local emissions
from heating combined with unfavorable meteorological diffusion
conditions (Zhang et al., 2016d). Lower PM2.5 concentrations occurred
in summer, and the urban areas reached only 60 μg/m3, which was
caused by the more frequent precipitation and active atmospheric
convection due to summer monsoon. In addition, intermediate situa-
tions appeared in spring and autumn when Wuhan tended to be affected
by both local emissions and exogenous aerosols (Qian et al., 2008; Wu
et al., 2011). Similar to the previous study in Beijing (Wu et al., 2016),
high averaged PM2.5 concentrations appeared in winter and spring,
with over 110 and 90 μg/m3 in most regions, respectively, with aver-
aged PM2.5 concentrations low in summer and average in autumn.
Domestic heating in winter might be a primary cause of fine particle
increasing (Zhao et al., 2015), while the dust storms from Northern and
Eastern China in spring contributed to fine particle concentrations in
Beijing (Han et al., 2015; Zheng et al., 2005). In Shanghai, the seasonal
averaged PM2.5 concentrations were relatively high in winter with most
regions reaching up to 90 μg/m3, relatively low in summer with most
regions below 40 μg/m3, and average in spring and autumn. The sea-
sonal variation in Shanghai was mainly affected by the transport and
dispersion of air mass, combined with dry and wet deposition (Wang
et al., 2016; Ming et al., 2017). The prevailing wind during winter in
Shanghai was from the north or northwest where the precursors were
from the coal combustion for heating, which was the main reason for
the higher PM2.5 in winter of Shanghai. In comparison, the cleaner air
mass from the East Sea of China and the higher mixing layer during
summer in Shanghai provided favorable dilution conditions. Moreover,
the seasonal variations of precipitation in Shanghai had influences on
the wet deposition of PM2.5 (Ding et al., 2013), and the dry deposition
might also have impacts on the variations of PM2.5 due to the seasonal
patterns of deciduous plants (Zhang et al., 2001).

4. Discussion

4.1. Spatial resolution advantages of GF

The spatial resolution advantages of the GF PM2.5 estimation were
discussed by using current mainstream PM2.5 estimations as references.
The annual averaged PM2.5 estimations during the experimental period
using GF AOD in Wuhan, Beijing, and Shanghai are respectively illu-
strated in Fig. 4a, b, and c. And the annual averaged PM2.5 estimations
in these three cities based on MODIS DB AOD are respectively shown in
Fig. 4e, f, and g. Although the GF PM2.5 estimations and MODIS DB
PM2.5 estimations possessed approximately the same spatial distribu-
tion for the annual average, the GF estimations had an obvious ad-
vantage in the spatial resolution. For instance, the saltation in the PM2.5

estimations of MODIS DB were distinct, whereas the GF PM2.5 estima-
tions illustrated a gradual variation in the spatial PM2.5. In addition, the
GF PM2.5 estimations could distinguish the relatively small areas with
the maximum PM2.5 values, whereas MODIS DB could not detect these
areas. These relatively small areas should have been explored because
they can be considered PM2.5 point emission sources. Therefore, GF
AOD can provide more PM2.5 variation details with much higher spatial
resolution than MODIS DB AOD. Van et al., 2016 estimated the global
ground-level PM2.5 using satellite-based AOD with the GEOS-Chem
chemical transport model, and the annual averaged satellite-derived
PM2.5 with 0.01°× 0.01° spatial resolution was released on their
website. The annual mean PM2.5 estimations with 0.01° spatial

T. Zhang et al. Remote Sensing of Environment 216 (2018) 91–104

97



resolution in Wuhan, Beijing, and Shanghai from 2014 to 2015 are il-
lustrated in SI (Fig. S5, S6, and S7). Based on the details inside these
high-resolution PM2.5 estimations, it could merely show that PM2.5 le-
vels in part of urban areas in Wuhan and Beijing were high. However,
western Wuhan, where rural areas are located, also possessed high le-
vels of PM2.5. And the PM2.5 concentrations in Shanghai just declined
along with the decrease in distance from the coastline, which hardly
illustrated the urban inner PM2.5 distribution in Shanghai. It was in-
dicated that this PM2.5 estimation with 0.01° spatial resolution had
unsatisfactory performance in relative small regions, which could not
be used to analyze the PM2.5 pollution inside urban areas relating to
urban structure.

4.2. Potential application in locating and quantifying main PM2.5 emission
sources of Wuhan

Compared to previous satellite PM2.5 estimations, the GF PM2.5 es-
timation has a unique spatial resolution advantage, which can offer new
opportunities for exploring the PM2.5 problem at a relatively small
geographical scale. In general, field investigation and ground mon-
itoring are adopted to locate PM2.5 emission sources, then ground
sampling and source apportionment analysis are adopted to quantify

the contribution of different PM2.5 emissions (Schauer et al., 1996;
Zhang et al., 2013). To our knowledge, related urban PM2.5 researches
have not been carried out via remote sensing techniques because sa-
tellite-based atmospheric monitoring has relatively coarse spatial re-
solution, which leads to one pixel consisting of multiple urban land-
scapes. In this study, the extra value of ultrahigh resolution PM2.5 was
demonstrated through an application in locating main PM2.5 emission
sources and quantifying their contribution subsequently in Wuhan. And
this application provides a new approach to study urban PM2.5 emission
sources, which can be easily applied in other urban regions.

Since the GF PM2.5 estimation was PM2.5 concentration instead of
PM2.5 emissions, the key point was that the spatial feature for PM2.5

emissions should be highlighted, while the situation in which PM2.5

concentrations fail to represent PM2.5 emissions should be weakened.
The process of automatically locating PM2.5 emission sources was stated
as follows. First, aiming at each pixel, the average process was con-
ducted on daily value in these two years after excluding the maximum
values and minimum values of 10% for this pixel. This step was to
simply and partly solve two extreme cases, namely severe haze periods
and excellent diffusion conditions, which resulted in high PM2.5 pol-
lution and low PM2.5 concentration, respectively, at relative large scale.
Therefore, the results of this adjusted annual averaged GF PM2.5, which

Fig. 3. Seasonally averaged PM2.5 estimated by GF AOD in spring (a), summer (b), autumn (c), and winter (d) in Wuhan; seasonally averaged PM2.5 estimated by GF
AOD in spring (e), summer (f), autumn (g), and winter (h) in Beijing; seasonally averaged PM2.5 estimated by GF AOD in spring (i), summer (j), autumn (k), and
winter (l) in Shanghai.
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is shown in Fig. 5II, had more obvious spatial distinction than the
original annual mean GF PM2.5 estimation in Fig. 4a. Second, aiming at
the whole region of Wuhan, the top 5% of the adjusted annual averaged
GF PM2.5 were selected to be the elemental pixels of the main PM2.5

emission areas. In order to handle the noise pixels and the poor con-
nectivity problem in the elemental pixels above, mathematical mor-
phology methods, including open operation, close operation, and
morphological reconstruction, were adopted based on binary elemental
pixels. The results of automatically locating main PM2.5 emission
sources in Wuhan were illustrated via black lines in Fig. 5II, which were
also shown in Google Earth image via red lines in Fig. 5I. Additionally,
several typical details of locating areas were zoomed in upon in order to
evaluate the performance of results. Fig. 5a outlined the center zone of
urban areas where the confluence of the Yangtze and Han Rivers is
located, and the cavities inside the urban center represented water

covers or urban green spaces. Fig. 5b outlined the entire Tianhe Inter-
national Airport, while only the parking apron and airstrip were se-
lected as PM2.5 emission area, indicating that our results could precisely
distinguish PM2.5 emission source inside a large PM2.5 emissions unit to
a certain extent. Fig. 5c outlined the combination of industrial zones
and residential areas, in which the dividing line separated industrial
zones from residential areas. Fig. 5d outlined a developing hi-tech in-
dustrial zone, which was previously a rural area before 2011. With
approximately half of the buildings having been built from 2014 to
2015, our results accordingly reflected these PM2.5 emission sources
from urban construction. Apart from the situations above, a small
number of industrial zones and residential areas were excluded by the
process above due to their lower PM2.5 emission loads and less popu-
lation density, respectively. In summary, the automatically demarcated
areas in this study could precisely locate main PM2.5 emission sources,

Fig. 4. Comparison of the PM2.5 estimations using GF AOD (a, b, and c) and MODIS DB AOD (d, e, and f) in Wuhan (a, d, and g), Beijing (b, e, and h), and Shanghai (c,
f, and i), respectively, combined with annual averaged ground-level PM2.5 measurements at each monitoring station (g, h, and i). (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.)
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consisting of urban centers, transportation hubs, industrial zones, and
urban construction.

In total, 28 elemental urban sections were identified based on au-
tomatically demarcated PM2.5 emission source areas in Wuhan (Fig. 6),
depending on both field investigation and Google Earth image se-
quences. The details of field investigation are shown in Table 3. The
comprehensive zones, where dense residential areas, business zones,
and urban construction were predominant, consist of Hankou Town
(No. 1), Hanyang Town (No. 2), and Wuchang Town (No. 3). The
Hankoubei Business and Trade Center (No. 4) was the biggest business
zone outside the outer ring road and was recognized as a vital PM2.5

emissions source. According to the comparison of temporal sequence
satellite images from 2014 to 2015, the green regions in Fig. 6 were
considered as PM2.5 emission sources from urban construction. In ad-
dition, as a typical industrial city in central China, most of the industrial
zones had been relocated to outside the outer ring road of Wuhan,
which in turn caused industrial PM2.5 pollution surrounding the urban

comprehensive zones.
From the perspective of industrial structure, the secondary industry

was allocated in large proportion, such as electricity, iron and steel,
building materials, automobile manufacturing, and chemicals.
However, the high-tech industries were still under development merely
in the Guanggu economic and technological development zone (No. 16)
in recent years. This unreasonable industrial structure directly resulted
in a distinct industrial contribution to PM2.5 emissions in Wuhan. To
quantify the contribution proportion of local PM2.5 emission sources, it
is of vital significance to adopt an index to measure their contribution.
Previous studies generally adopted source apportionment methodology
to analyze the chemical compositions and emission sources of PM2.5

(Querol et al., 2001; Zheng et al., 2002; Zheng et al., 2005). Never-
theless, no matter what kind of source apportionment cannot skip
massive sampling, which possesses a high cost of human resources and
financial resources. It should also be noted that site-based sampling
could not represent the overall situation in the whole region. Based on

Fig. 5. Results and performances of automatically locating main PM2.5 emission sources in Wuhan via the adjusted annual averaged GF PM2.5 estimation, combined
with Google Earth images as references.
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our results above, the contribution to PM2.5 emissions can be quantified
via remote sensing techniques. Accordingly, the Total PM2.5 Emission
Index (TPMEI), which was simply the sum of the adjusted averaged
PM2.5 in one demarcated region, was proposed and calculated to re-
present the PM2.5 emission level from that demarcated area in Table 2.
Taking industrial zones as an example, the proportion of industrial
contribution to PM2.5 emissions in Wuhan was the sum of the TPMEI in
industrial zones divided by the sum of the TPMEI in all elemental zones,

namely 37.77%. Based on positive matrix factor (PMF) analysis (Cheng
et al., 2012), the source apportionment results of local PM2.5 from the
end of 2013 to early 2016 were released by the Wuhan Environmental
Protection Bureau in April 2016 (WEPB, 2016). The results showed that
the emissions from industrial production accounted for 32% of PM2.5

local emissions, proving that evaluating the PM2.5 contribution pro-
portion of different elemental zone from TPMEI was acceptable.
Meanwhile, it was found that approximately 56.16% of local PM2.5

Fig. 6. Field investigation of demarcated PM2.5 emission sources with primary urban function in Wuhan.

Table 3
List of elemental urban zones in PM2.5 emission areas of Wuhan, combined with the Total PM2.5 Emission Index (TPMEI) as a PM2.5 emissions contribution factor.

No. Location Area (km2) TPMEI (1× 103 μgm−3 km2)

1 Hankou Town 174.259 14.863
2 Hanyang Town 74.317 6.290
3 Wuchang Town 178.944 15.084
4 Hankoubei Business and Trade Center 6.118 0.522
5 Wuhan Tianhe International Airport 1.024 0.087
6 Wuhan Yangluo Wharf 1.254 0.105
7 Wuhan High-speed Railway Station & Bullet Train Maintenance Base 12.979 1.125
8 Hankoubei Industrial Base of Building and Decoration Materials 6.963 0.588
9 Wuhan Chenjiaji Industrial Zone 11.469 0.973
10 Wuhan Yangluo Industrial Zone 2.842 0.235
11 Wuhan Iron and Steel Group Company Limited, Jiangbei Branch 1.997 0.168
12 Sinopec Wuhan Petrochemical Company Limited 1.997 0.169
13 Wuhan Qingshan Industrial Zone 6.989 0.604
14 Wuhan Iron and Steel Group Company Limited 37.146 3.120
15 Shuangliu Production Base of Heavy Industry 7.962 0.670
16 Wuhan Guanggu Economic and Technological Development Zone 12.877 1.079
17 Wuhan Baishazhou Economic Development Zone 9.318 0.792
18 Wuhan Jiangxia Industrial Zone 4.531 0.377
19 Wuhan Jiangxia Automobile Production and Distribution Center 4.045 0.346
20 Wuhan Huading Industrial Zone 6.246 0.527
21 Wuhan Zhuankou Economic and Technological Development Zone 56.909 4.807
22 Wuhan Huangjinkou Industrial Zone 34.330 2.929
23 Wuhan Jiahe Industrial Zone 3.866 0.326
24 Wuhan Dongxihu Economic Development Zone 68.685 5.816
25 Wuhan Jinyintan Industrial Zone 9.907 0.845
26 Peripherally Dilated Residential Area 1.894 0.157
27 Developing Hi-Tech Industrial Zone 21.094 1.760
28 Guanggu International Olympic Sports Center 1.946 0.161
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emissions in Wuhan stemmed from comprehensive zones, which were
the result of intensive human activity and dense urban construction.
Based on this index, the analysis of PM2.5 emission contributions was
thereby related to the urban landscape and functional zones instead of
chemical component analysis. In other words, the fine particle pollution
in inner urban areas could also be explored and analyzed via remote
sensing techniques. This index was easily calculated and could be
widely used to assess PM2.5 emission contributions in other urban re-
gions without PM2.5 source apportionment. Along with joint observa-
tions via other high-resolution satellites, such as Gaofen-2 and Gaofen-
4, the temporal resolution of GF PM2.5 could further increase, and the
PM2.5 emission contribution could be calculated every year to evaluate
the efficacy of emission reduction policies in urban area.

Furthermore, this study attempted to connect the daily GF PM2.5

estimation with ground-monitor pollutant gas emissions in non-haze
period, and the GF PM2.5 thereby became a complementary method to
monitor pollutant gas emission loads in some specific situations. This
specific condition in the experiment was also set to rule out windy
period, which excluded good diffusion condition that facilitated pol-
lutant dispersion. Table 4 demonstrated the Pearson correlation coef-
ficient between daily GF PM2.5 estimation and pollutant gas emissions
from 7 key emission sources in Wuhan, combined with the information
and location of these key emission sources. The daily pollutant gas
emissions, including SO2 and NOx, were monitored and released by the
Hubei Provincial Environmental Protection Bureau (Environmental
Information Release System of Pollution Source in Hubei Province:
http://119.97.194.18:4508/). The Pearson correlation coefficient,
which is a measure of the linear correlation between two variables, has
been adopted to calculate the correlation between GF PM2.5 and SO2/
NOx. Its value ranges from −1 to +1, where −1 means an absolutely
negative correlation, 0 means no correlation, and+ 1 means an abso-
lutely positive correlation. According to the results in Table 4, GF PM2.5

had positive correlation with pollutant gas emissions at all emission
sources. The ideal Pearson correlation coefficient reached up to 0.6,
even 0.7, while the coefficient of State Power Qingshan Thermal Power
Co. Ltd. and Wuhan Iron and Steel Group Co. Ltd. showed weak positive
correlations. The possible reason was they were all located in Wuhan
iron and steel industrial zones, which contained multiple exhaust stacks
of pollutant gas. When these exhaust stacks were close to each other,
the results would be influenced by cross effects. In general, the daily GF
PM2.5 estimation possessed positive correlation with pollutant gas
emission loads, which could offer an auxiliary approach to quantify
daily PM2.5 emission levels without ground monitoring stations in non-
haze period.

In sum, GF PM2.5 estimation with ultrahigh spatial resolution pro-
vides a unique perspective for locating and quantifying urban PM2.5

emission sources through remote sensing techniques. The spatial con-
struction of urban inner fine particle pollution could be related to urban
unit at a relative small scale, and the PM2.5 emissions could also be
linked to the urban function areas. The experimental results indicate
that GF PM2.5 can support to precisely locate main PM2.5 emission
sources, evaluate local PM2.5 contribution proportion, and quantify
daily PM2.5 emission levels in non-haze period to a certain extent.

Corresponding studies in previous literature could only be conducted
through massive ground sampling, chemical component analysis, and
PM2.5 source apportionment, which consumed plenty of manpower and
financial resources. Thus, analyzing urban inner PM2.5 via GF can be
considered as a convenient and efficient approach, and it is feasible to
apply it widely in other cities.

4.3. Limitations and future work

In this study, we used the GF AOD retrievals to estimate the ground-
level PM2.5 mass concentrations in three representative cities of China,
combined with the WRF meteorologically simulated data. To our
knowledge, this is one of the first study that estimates PM2.5 con-
centrations in urban areas with an ultrahigh spatial resolution of 160m.
Compared to the estimates from conventional moderate resolution sa-
tellites, GF PM2.5 estimations have very high spatial resolution.
Therefore, these data could be used to locate PM2.5 emission sources,
and many additional applications related to urban landscape and PM2.5

pollution structures could be developed based on the ultrahigh re-
solution PM2.5 estimations.

There exist limitations should be discussed. The first limitation is
the limited number of AOD-PM2.5 matchups per day. It was proven that
fewer matchups would cause model over-fitting and deteriorate the
estimation accuracy, and over-fitting was alleviated with an increasing
number of matchups per day (J. Hu et al., 2014; X. Hu et al., 2014; Wu
et al., 2016). According to the lack of AOD retrievals mainly caused by
cloud obscuration, in this paper, a minimum daily number of three
matchups was required to ensure both sufficient number of observa-
tions in the CV model and prediction accuracy. Meanwhile, the uniform
spatial distribution for PM2.5 monitoring stations is necessary to more
accurately predict the PM2.5 level over rural and mountainous areas,
because most of the monitoring sites are located in urban regions.
Second, since the experimental regions in this study were relatively
small, little spatial variation occurred in the relationship between PM2.5

and AOD. Our results demonstrated little spatial autocorrelation in the
residuals of the PM2.5 estimations. However, with the expansion of the
PM2.5 estimation region, spatial variation will become prominent and
should no longer be neglected. Therefore, we plan to use a second-stage
geo-statistics model by adopting the residuals of the first-stage LME
model as a dependent variable and using the geographic-related para-
meters as independent variables in order to estimate the PM2.5 con-
centrations with ultrahigh spatial resolution at a larger scale. Thirdly, it
should be noted that the PM2.5 estimations in those days without en-
ough AOD-PM2.5 matchups possessed the same weight as the original
PM2.5 estimations when calculating seasonal and annual PM2.5 esti-
mations in this study. However, since PM2.5 estimates in those days
with or without PM2.5-AOD matchups have different accuracy, it would
be better to assign different weights to different daily PM2.5 estimations.
Fourthly, it also should be mentioned that the GF AOD was good en-
ough to locate atmospheric pollution sources, which was demonstrated
in our previous study (Sun et al., 2018). However, the atmospheric
pollution sources located by GF AOD included both fine particle and
coarse particle emission sources, which could not be adopted to apply

Table 4
The Pearson correlation coefficient between the daily GF PM2.5 estimation and pollutant gas emissions from 7 key emission source monitoring sites in Wuhan.

Site Longitude Latitude N Pearson coef. (PM2.5-SO2) Pearson coef. (PM2.5-NOX)

Wuhan Gaoxin Thermo Power Co. Ltd. 114.4210 30.4832 23 0.705 0.679
Wuhan Chenming Qianneng Thermo Power Co. Ltd. 114.1937 30.4785 17 0.654 0.601
Wuhan Branch of China Petrochemical Co. Ltd. 114.4307 30.6517 18 0.506 0.612
State Power Qingshan Thermal Power Co. Ltd. (Furnace 12#) 114.4358 30.6345 19 0.312 0.418
State Power Qingshan Thermal Power Co. Ltd. (Furnace 13#) 114.4378 30.6328 21 0.533 0.341
Wuhan Iron and Steel Group Co. Ltd.

(Four Sintering Desulfurization Furnace)
114.4350 30.6318 19 0.355 0.469

Wuhan Iron and Steel Electricity Co. Ltd. 114.4649 30.6394 19 0.76 0.783
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in locating and quantifying PM2.5 emission sources. Finally, due to its
high resolution, the GF-1 WFV has a revisit period of four days, which
indicates an apparent limitation in the temporal resolution. To better
capture the PM2.5 temporal variation trends, our future work will focus
on constructing a high-resolution satellite air monitoring network in
China, which preliminarily consists of Gaofen-1, Gaofen-2 (a sun syn-
chronous recurrent satellite launched in 2014 with the same multi-
spectral bands as GF-1), and Gaofen-4 (a geosynchronous satellite
launched in 2015 with the same multi-spectral bands as GF-1) and may
be extended to incorporate Landsat-8 (launched in 2013 with no ex-
isting AOD retrieval algorithm).

5. Conclusions

This paper first evaluates the feasibility of estimating ground-level
PM2.5 in urban areas using the 160m spatial resolution GF AOD and
nested LME model. The results show that the performance of the GF-
estimated PM2.5 concentrations at a 160m spatial resolution is com-
parable to that of the MODIS DB-estimated PM2.5 at a 10 km spatial
resolution. It was demonstrated that the ultrahigh spatial resolution of
GF AOD products offers substantial advantages over current main-
stream PM2.5 estimations by providing spatially finer contrasts of PM2.5

trends and relating to smaller geographical units. Based on this ultra-
high spatial resolution, GF PM2.5 estimations provide a unique per-
spective for locating and quantifying urban PM2.5 emission sources
through remote sensing techniques. The experimental results indicate
that GF PM2.5 can help to precisely locate main PM2.5 emission sources,
evaluate local PM2.5 contribution proportion, and quantify daily PM2.5

emission levels in non-haze period to a certain extent. Along with joint
observations using other high-resolution satellites, GF PM2.5 will gra-
dually become a convenient approach to analyze the urban inner PM2.5

problem and offer an efficient way for government to evaluate the ef-
ficacy of emission management and reduction policies in urban areas.

Our future studies will focus on three aspects. First, we will try to
estimate ultrahigh resolution PM2.5 concentrations at larger scale by
developing a second-stage geo-statistics model based on the residuals of
the LME model and considering spatial variation. Second, we will relate
the ultrahigh resolution PM2.5 estimations to multiple types of urban
structures and landscapes to analyze the urban inner pollution patterns
and wind corridors. Finally, since the PM2.5 estimations using GF-1
AOD have limited temporal resolution, we plan to apply our GF AOD
retrieval algorithm to Gaofen-2 and Gaofen-4, which have the same
multi-spectral bands as GF-1 and constitute high-resolution satellite air
monitoring network in China.
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